Xiaoyan Zhang, Xiaoqi Wang, Zhiyong Li, Kele Wang, Juntao Ma and Shunbo Zhao
{"title":"Study on preparation and performance of cement-stabilized macadam containing ground sludge gasification slag (GSGS)","authors":"Xiaoyan Zhang, Xiaoqi Wang, Zhiyong Li, Kele Wang, Juntao Ma and Shunbo Zhao","doi":"10.1039/D5RA00462D","DOIUrl":null,"url":null,"abstract":"<p >Traditional cement-based road materials face problems of high energy consumption and carbon emissions, and the use of activated solid waste as a substitute for cementitious materials has been applied in road engineering. Sludge gasification slag (SGS), a product obtained from the pyrolysis and gasification of sludge, is a typical silicon–aluminum-rich solid waste that exhibits good compatibility with alkaline activation systems due to its potential activity. This study focuses on the component reconstruction mechanism of SGS in alkali-activated materials, employing cement (P) and carbide slag (CS) for synergistic modification, exploring the mechanism for enhancing the cementitious properties of sludge gasification slag under multi-component mixing conditions, and verifying its feasibility for use in cement-stabilized macadam. The results show that GSGS and GCS have a synergistic activation effect in the cement hydration system, promoting the formation of C–(A)–S–H gel and AFt. When both are incorporated in a mass ratio of 6 : 4 and account for 70% of the composite system, the compressive strength is increased by 53.19% compared to alone. When the composite material is used in cement-stabilized macadam with a 40% replacement ratio of cement, there is no significant decrease in strength, verifying the feasibility of using cement-composite sludge gasification slag in cement-stabilized macadam.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 9","pages":" 7139-7148"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00462d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00462d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional cement-based road materials face problems of high energy consumption and carbon emissions, and the use of activated solid waste as a substitute for cementitious materials has been applied in road engineering. Sludge gasification slag (SGS), a product obtained from the pyrolysis and gasification of sludge, is a typical silicon–aluminum-rich solid waste that exhibits good compatibility with alkaline activation systems due to its potential activity. This study focuses on the component reconstruction mechanism of SGS in alkali-activated materials, employing cement (P) and carbide slag (CS) for synergistic modification, exploring the mechanism for enhancing the cementitious properties of sludge gasification slag under multi-component mixing conditions, and verifying its feasibility for use in cement-stabilized macadam. The results show that GSGS and GCS have a synergistic activation effect in the cement hydration system, promoting the formation of C–(A)–S–H gel and AFt. When both are incorporated in a mass ratio of 6 : 4 and account for 70% of the composite system, the compressive strength is increased by 53.19% compared to alone. When the composite material is used in cement-stabilized macadam with a 40% replacement ratio of cement, there is no significant decrease in strength, verifying the feasibility of using cement-composite sludge gasification slag in cement-stabilized macadam.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.