{"title":"Ensemble learning based on matrix completion improves microbe-disease association prediction.","authors":"Hailin Chen, Kuan Chen","doi":"10.1093/bib/bbaf075","DOIUrl":null,"url":null,"abstract":"<p><p>Microbes have a profound impact on human health. Identifying disease-associated microbes would provide helpful guidance for drug development and disease treatment. Through an enormous experimental effort, limited disease-associated microbes have been determined. Accurate computational approaches are needed to predict potential microbe-disease associations for biomedical screening. In this study, we present an ensemble learning framework entitled SABMDA to improve microbe-disease association inference. We first integrate multi-source of information from both microbes and diseases, and develop two matrix completion algorithms to predict microbe-disease associations successively. Ablation tests show combining the two matrix completion algorithms can receive better prediction performance. Moreover, comprehensive experiments, including cross-validations and independent test, demonstrate that SABMDA outperforms seven recent baseline methods significantly. Finally, we apply SABMDA to three diseases to predict their associated microbes, and results show SABMDA's remarkable prediction ability in real situations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf075","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbes have a profound impact on human health. Identifying disease-associated microbes would provide helpful guidance for drug development and disease treatment. Through an enormous experimental effort, limited disease-associated microbes have been determined. Accurate computational approaches are needed to predict potential microbe-disease associations for biomedical screening. In this study, we present an ensemble learning framework entitled SABMDA to improve microbe-disease association inference. We first integrate multi-source of information from both microbes and diseases, and develop two matrix completion algorithms to predict microbe-disease associations successively. Ablation tests show combining the two matrix completion algorithms can receive better prediction performance. Moreover, comprehensive experiments, including cross-validations and independent test, demonstrate that SABMDA outperforms seven recent baseline methods significantly. Finally, we apply SABMDA to three diseases to predict their associated microbes, and results show SABMDA's remarkable prediction ability in real situations.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.