Rongxin Xie, Ming Li, Zhiwang Feng, Jiayi Xie, Akaninyene Joseph, Minori Uchimiya, Yimin Wang
{"title":"Changes in the spectroscopic response of soil organic matters by PBAT microplastics regulated the Cd adsorption behaviors in different soils.","authors":"Rongxin Xie, Ming Li, Zhiwang Feng, Jiayi Xie, Akaninyene Joseph, Minori Uchimiya, Yimin Wang","doi":"10.1007/s10653-025-02417-9","DOIUrl":null,"url":null,"abstract":"<p><p>Contamination of microplastics (MPs) and heavy metals occurs frequently in terrestrial ecosystems, but their interactions remain unclear. A 60-day incubation experiment was conducted to study the behaviors of cadmium (Cd) in polybutylene adipate terephthalate (PBAT) MPs-contaminated soils, with different doses (1, 10%) and sizes (150-300 and 75-150 μm). Soil chemical properties, including the three-dimensional fluorescence of dissolved organic matter (DOM) and microbial diversity in both farmland and woodland soils were analyzed. Results showed that soil properties, especially the components and fluorescence characteristics of DOM varied with soil types and PBAT properties. Higher soil chemical properties and microbial diversity were found in woodland soils. The soluble microbial by-product substances and humic acid-like substance were dominated in soil DOM, while the proportions of fulvic/humic-acid like substances and soil humification decreased with the addition of 10% PBAT. Soil microbial diversity increased with doses of PBAT, but not sensitive to the sizes of PBAT. The adsorption capacity of Cd decreased with the addition of PBAT, especially in the 10% and 75-150 μm PBAT treatments. Both Langmuir and Freundlich models fitted well with the adsorption isotherms of Cd. Multiple correlation analyses showed that low molecular weight fractions, humus index of DOM and soil microbial diversity such as Shannon, Simpson, and Pielou all positively correlated with the adsorption behaviors of Cd in PBAT-contaminated soils. Biodegradable MPs can change soil quality and promote the release of soil Cd, which deserves further research attention.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"103"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02417-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Contamination of microplastics (MPs) and heavy metals occurs frequently in terrestrial ecosystems, but their interactions remain unclear. A 60-day incubation experiment was conducted to study the behaviors of cadmium (Cd) in polybutylene adipate terephthalate (PBAT) MPs-contaminated soils, with different doses (1, 10%) and sizes (150-300 and 75-150 μm). Soil chemical properties, including the three-dimensional fluorescence of dissolved organic matter (DOM) and microbial diversity in both farmland and woodland soils were analyzed. Results showed that soil properties, especially the components and fluorescence characteristics of DOM varied with soil types and PBAT properties. Higher soil chemical properties and microbial diversity were found in woodland soils. The soluble microbial by-product substances and humic acid-like substance were dominated in soil DOM, while the proportions of fulvic/humic-acid like substances and soil humification decreased with the addition of 10% PBAT. Soil microbial diversity increased with doses of PBAT, but not sensitive to the sizes of PBAT. The adsorption capacity of Cd decreased with the addition of PBAT, especially in the 10% and 75-150 μm PBAT treatments. Both Langmuir and Freundlich models fitted well with the adsorption isotherms of Cd. Multiple correlation analyses showed that low molecular weight fractions, humus index of DOM and soil microbial diversity such as Shannon, Simpson, and Pielou all positively correlated with the adsorption behaviors of Cd in PBAT-contaminated soils. Biodegradable MPs can change soil quality and promote the release of soil Cd, which deserves further research attention.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.