Keshuo Zhang, Jiancheng Mo, Zengwen Liu, Weizhao Yin, Fan Wu, Jing You
{"title":"Life cycle environmental and economic impacts of various energy storage systems: eco-efficiency analysis and potential for sustainable deployments.","authors":"Keshuo Zhang, Jiancheng Mo, Zengwen Liu, Weizhao Yin, Fan Wu, Jing You","doi":"10.1093/inteam/vjaf035","DOIUrl":null,"url":null,"abstract":"<p><p>The deployment of energy storage systems (ESS) plays a pivotal role in accelerating the global transition to renewable energy sources. Comprehending the life cycle environmental and economic impacts, as well as the necessary conditions and scenarios required for ESS deployment, is critical in guiding decision-making and supporting sustainable operations. In this study, we first analyzed the life cycle environmental impacts of pumped hydro energy storage (PHES), lithium-ion batteries (LIB), and compressed air energy storage (CAES). We then focused on elucidating the potential for carbon neutrality in existing PHES systems compared to LIBs in China by integrating various reduction measures to achieve net-zero emissions scenarios. Ultimately, we combined environmental and economic impacts to demonstrate the eco-efficiency of both ESS, supporting their sustainable deployment. Regarding environmental impacts, LIB is currently the most environmentally favorable ESS, followed by PHES. Various decarbonization measures revealed that transitioning to renewable energy sources is the most effective strategy for carbon reduction, with projected reductions ranging between 75 and 112% in both PHES and LIB systems. When implementing all carbon reduction strategies simultaneously, LIB is expected to achieve carbon neutrality by 2030, whereas PHES is projected to reach this milestone by 2040. With anticipated energy mix optimizations, carbon emissions are expected to further decrease to 22.2 kg CO2/MWh for PHES and 48.7 kg CO2/MWh for LIB by 2050. Economic analysis indicates that the life cycle cost per MWh for PHES is $66.5, approximately half that of LIB. Meanwhile, the payback period of PHES is 21 years, while that of LIB is 28 years to reach the break-even point. This disparity clearly underscores the superior economic benefits of PHES. The eco-efficiency of PHES is anticipated to surpass that of LIBs by 2028, rendering PHES a more favorable option in appropriate regions.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf035","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of energy storage systems (ESS) plays a pivotal role in accelerating the global transition to renewable energy sources. Comprehending the life cycle environmental and economic impacts, as well as the necessary conditions and scenarios required for ESS deployment, is critical in guiding decision-making and supporting sustainable operations. In this study, we first analyzed the life cycle environmental impacts of pumped hydro energy storage (PHES), lithium-ion batteries (LIB), and compressed air energy storage (CAES). We then focused on elucidating the potential for carbon neutrality in existing PHES systems compared to LIBs in China by integrating various reduction measures to achieve net-zero emissions scenarios. Ultimately, we combined environmental and economic impacts to demonstrate the eco-efficiency of both ESS, supporting their sustainable deployment. Regarding environmental impacts, LIB is currently the most environmentally favorable ESS, followed by PHES. Various decarbonization measures revealed that transitioning to renewable energy sources is the most effective strategy for carbon reduction, with projected reductions ranging between 75 and 112% in both PHES and LIB systems. When implementing all carbon reduction strategies simultaneously, LIB is expected to achieve carbon neutrality by 2030, whereas PHES is projected to reach this milestone by 2040. With anticipated energy mix optimizations, carbon emissions are expected to further decrease to 22.2 kg CO2/MWh for PHES and 48.7 kg CO2/MWh for LIB by 2050. Economic analysis indicates that the life cycle cost per MWh for PHES is $66.5, approximately half that of LIB. Meanwhile, the payback period of PHES is 21 years, while that of LIB is 28 years to reach the break-even point. This disparity clearly underscores the superior economic benefits of PHES. The eco-efficiency of PHES is anticipated to surpass that of LIBs by 2028, rendering PHES a more favorable option in appropriate regions.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.