Qonita Deifaky Tsauria, Paulus Lobo Gareso, Dahlang Tahir
{"title":"Systematic Review of Chitosan-Based Adsorbents for Heavy Metal and Dye Remediation.","authors":"Qonita Deifaky Tsauria, Paulus Lobo Gareso, Dahlang Tahir","doi":"10.1093/inteam/vjaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Water contamination from heavy metals and synthetic dyes presents a persistent environmental challenge, necessitating the development of efficient and sustainable remediation strategies. This review critically evaluates chitosan-based adsorbents, focusing on chitosan-activated carbon composites, and explores recent breakthroughs in structural and functional modifications that enhance their adsorption capacity. Innovations such as nanoparticle integration, Metal-Organic Frameworks (MOFs), bio-based reinforcements, and surface functionalization have significantly improved selectivity, adsorption kinetics, and regeneration potential, enabling greater adaptability for wastewater treatment. Additionally, this review highlights the emergence of hybrid water treatment technologies, including adsorption-assisted photocatalysis, electrochemical regeneration, and nanostructured filtration systems, which offer promising solutions for overcoming challenges related to adsorbent stability, scalability, and process efficiency in complex wastewater matrices. The study comprehensively evaluates these advancements, offering insights into material innovations, process optimization strategies, and their alignment with circular economy principles for sustainable water treatment applications. Future research should prioritize enhancing long-term adsorbent stability, improving regeneration efficiency, and integrating predictive modeling techniques to bridge the gap between laboratory advancements and large-scale implementation.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf037","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water contamination from heavy metals and synthetic dyes presents a persistent environmental challenge, necessitating the development of efficient and sustainable remediation strategies. This review critically evaluates chitosan-based adsorbents, focusing on chitosan-activated carbon composites, and explores recent breakthroughs in structural and functional modifications that enhance their adsorption capacity. Innovations such as nanoparticle integration, Metal-Organic Frameworks (MOFs), bio-based reinforcements, and surface functionalization have significantly improved selectivity, adsorption kinetics, and regeneration potential, enabling greater adaptability for wastewater treatment. Additionally, this review highlights the emergence of hybrid water treatment technologies, including adsorption-assisted photocatalysis, electrochemical regeneration, and nanostructured filtration systems, which offer promising solutions for overcoming challenges related to adsorbent stability, scalability, and process efficiency in complex wastewater matrices. The study comprehensively evaluates these advancements, offering insights into material innovations, process optimization strategies, and their alignment with circular economy principles for sustainable water treatment applications. Future research should prioritize enhancing long-term adsorbent stability, improving regeneration efficiency, and integrating predictive modeling techniques to bridge the gap between laboratory advancements and large-scale implementation.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.