Deubiquitinase Ubiquitin-Specific Protease 29 Ameliorates Pathological Cardiac Hypertrophy through Inhibiting Transforming Growth Factor β-Activated Kinase 1.

IF 5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of the American Heart Association Pub Date : 2025-03-05 DOI:10.1161/JAHA.124.034962
Xi Jiang, Yan Sun, Hongjie Shi, Zhen Liu, Jianqing Zhang, Changlu Xu, Yufeng Hu, Tiesheng Niu
{"title":"Deubiquitinase Ubiquitin-Specific Protease 29 Ameliorates Pathological Cardiac Hypertrophy through Inhibiting Transforming Growth Factor β-Activated Kinase 1.","authors":"Xi Jiang, Yan Sun, Hongjie Shi, Zhen Liu, Jianqing Zhang, Changlu Xu, Yufeng Hu, Tiesheng Niu","doi":"10.1161/JAHA.124.034962","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pathological cardiac hypertrophy, characterized by the involvement of multiple regulators, ultimately leads to heart failure in the absence of effective interventions. The identification of key factors involved is crucial for exploring novel treatments for heart failure. However, the function and pathological implications of USP29 (ubiquitin-specific protease 29) in cardiomyocytes remain unknown.</p><p><strong>Methods and results: </strong>The impacts of USP29 on pathological cardiac hypertrophy were investigated through the use of knockout/overexpression mice and overexpression/knockdown cardiomyocytes, accompanied by bioinformatic analysis and multiple molecular biological techniques to elucidate the underlying mechanisms. We observed upregulation of USP29 protein levels in both transverse aortic constriction-induced hypertrophic hearts (upregulated by 159.8%) and phenylephrine-induced hypertrophic cardiomyocytes (upregulated by 184.6%). Moreover, genetic knockout of USP29 in mice exacerbated transverse aortic constriction-induced heart hypertrophy, dysfunction, and fibrosis, whereas overexpression of USP29 in cardiomyocytes using adeno-associated virus 9 effectively attenuated the hypertrophic response. Similarly, USP29 alleviated phenylephrine-induced hypertrophy of primary neonatal rat cardiomyocytes. Mechanistically, the cardioprotective effects mediated by USP29 were attributed to its suppression of TAK1 (transforming growth factor β-activated kinase 1) activation. Further molecular analysis revealed that USP29 directly interacts with TAK1 through amino acids 284 to 922 of USP29 and amino acids 1 to 306 of TAK1, subsequently inhibiting TAK1 activation via K63-linked deubiquitination, which is indispensable for regulating cardiac hypertrophy by USP29.</p><p><strong>Conclusions: </strong>Here, we have identified USP29 as a novel negative regulator of pathological cardiac hypertrophy. Our findings suggest that targeting either USP29 or its interaction with TAK1 could represent an innovative therapeutic strategy for treating heart failure and cardiac hypertrophy.</p>","PeriodicalId":54370,"journal":{"name":"Journal of the American Heart Association","volume":" ","pages":"e034962"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Heart Association","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/JAHA.124.034962","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pathological cardiac hypertrophy, characterized by the involvement of multiple regulators, ultimately leads to heart failure in the absence of effective interventions. The identification of key factors involved is crucial for exploring novel treatments for heart failure. However, the function and pathological implications of USP29 (ubiquitin-specific protease 29) in cardiomyocytes remain unknown.

Methods and results: The impacts of USP29 on pathological cardiac hypertrophy were investigated through the use of knockout/overexpression mice and overexpression/knockdown cardiomyocytes, accompanied by bioinformatic analysis and multiple molecular biological techniques to elucidate the underlying mechanisms. We observed upregulation of USP29 protein levels in both transverse aortic constriction-induced hypertrophic hearts (upregulated by 159.8%) and phenylephrine-induced hypertrophic cardiomyocytes (upregulated by 184.6%). Moreover, genetic knockout of USP29 in mice exacerbated transverse aortic constriction-induced heart hypertrophy, dysfunction, and fibrosis, whereas overexpression of USP29 in cardiomyocytes using adeno-associated virus 9 effectively attenuated the hypertrophic response. Similarly, USP29 alleviated phenylephrine-induced hypertrophy of primary neonatal rat cardiomyocytes. Mechanistically, the cardioprotective effects mediated by USP29 were attributed to its suppression of TAK1 (transforming growth factor β-activated kinase 1) activation. Further molecular analysis revealed that USP29 directly interacts with TAK1 through amino acids 284 to 922 of USP29 and amino acids 1 to 306 of TAK1, subsequently inhibiting TAK1 activation via K63-linked deubiquitination, which is indispensable for regulating cardiac hypertrophy by USP29.

Conclusions: Here, we have identified USP29 as a novel negative regulator of pathological cardiac hypertrophy. Our findings suggest that targeting either USP29 or its interaction with TAK1 could represent an innovative therapeutic strategy for treating heart failure and cardiac hypertrophy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Heart Association
Journal of the American Heart Association CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
9.40
自引率
1.90%
发文量
1749
审稿时长
12 weeks
期刊介绍: As an Open Access journal, JAHA - Journal of the American Heart Association is rapidly and freely available, accelerating the translation of strong science into effective practice. JAHA is an authoritative, peer-reviewed Open Access journal focusing on cardiovascular and cerebrovascular disease. JAHA provides a global forum for basic and clinical research and timely reviews on cardiovascular disease and stroke. As an Open Access journal, its content is free on publication to read, download, and share, accelerating the translation of strong science into effective practice.
期刊最新文献
Deubiquitinase Ubiquitin-Specific Protease 29 Ameliorates Pathological Cardiac Hypertrophy through Inhibiting Transforming Growth Factor β-Activated Kinase 1. Emerging Role of Targeting Deubiquitinating Enzymes to Inhibit Pathological Cardiac Hypertrophy. International Consensus on Evidence Gaps and Research Opportunities in Extracorporeal Cardiopulmonary Resuscitation for Refractory Out-of-Hospital Cardiac Arrest: A Report From the National Heart, Lung, and Blood Institute Workshop. Burden of Hyperlipidemia, Cardiovascular Mortality, and COVID-19: A Retrospective-Cohort Analysis of US Data. Correction to: Cardiopulmonary Exercise Test Interpretation Across the Lifespan in Congenital Heart Disease: A Scientific Statement From the American Heart Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1