The Effect of Physical Structural Properties on Electrochemical Properties of Ruthenium Oxide for Neural Stimulating and Recording Electrodes.

Yupeng Wu, Miguel Figueroa Hernandez, Tian Lei, Siddarth Jayakumar, Rohan R Lalapet, Alexandra Joshi-Imre, Mark E Orazem, Kevin J Otto, Stuart F Cogan
{"title":"The Effect of Physical Structural Properties on Electrochemical Properties of Ruthenium Oxide for Neural Stimulating and Recording Electrodes.","authors":"Yupeng Wu, Miguel Figueroa Hernandez, Tian Lei, Siddarth Jayakumar, Rohan R Lalapet, Alexandra Joshi-Imre, Mark E Orazem, Kevin J Otto, Stuart F Cogan","doi":"10.1109/EMBC53108.2024.10781914","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, there has been a growing interest in ruthenium oxide (RuOx) as an alternative mixed-conductor oxide to SIROF as an electrode coating. RuOx is recognized as a faradic charge-injection coating with high CSCc, long-term pulsing stability, and low impedance. We examined how the structural properties of sputter-deposited RuOx influence its electrochemical performance as an electrode coating for neural stimulation and recording. Thin film RuOx was deposited under various pressures: 5 mTorr, 15 mTorr, 30 mTorr, and 60 mTorr on wafer-based planar test structures. Electrochemical characterizations, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and voltage transient (VT), were employed. The structure of RuOx films was characterized by scanning electron microscope (SEM). Our findings revealed that the sputtering pressure significantly influences the growth of the RuOx film, subsequently affecting its electrochemical performance. The results indicate that the electrochemical performance of RuOx can be optimized by adjusting the deposition conditions to achieve a favorable balance between electronic and ionic conductivity.Clinical Relevance- This research underscores the potential for optimizing the structural properties of RuOx to enhance its electrochemical capabilities for neural stimulation and recording.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been a growing interest in ruthenium oxide (RuOx) as an alternative mixed-conductor oxide to SIROF as an electrode coating. RuOx is recognized as a faradic charge-injection coating with high CSCc, long-term pulsing stability, and low impedance. We examined how the structural properties of sputter-deposited RuOx influence its electrochemical performance as an electrode coating for neural stimulation and recording. Thin film RuOx was deposited under various pressures: 5 mTorr, 15 mTorr, 30 mTorr, and 60 mTorr on wafer-based planar test structures. Electrochemical characterizations, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and voltage transient (VT), were employed. The structure of RuOx films was characterized by scanning electron microscope (SEM). Our findings revealed that the sputtering pressure significantly influences the growth of the RuOx film, subsequently affecting its electrochemical performance. The results indicate that the electrochemical performance of RuOx can be optimized by adjusting the deposition conditions to achieve a favorable balance between electronic and ionic conductivity.Clinical Relevance- This research underscores the potential for optimizing the structural properties of RuOx to enhance its electrochemical capabilities for neural stimulation and recording.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经刺激和记录电极的氧化钌的物理结构特性对其电化学特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Multi-dataset Collaborative Learning for Liver Tumor Segmentation. A Modified Reference Scan Method for MR Image Inhomogeneity Correction. Muscle activation of lower limb during walking in elderly individuals with sarcopenia: A pilot study. A Multi-branch Attention-based Deep Learning Method for ALS Identification with sMRI Data. Narrowband-Enhanced Method for Improving Frequency Recognition in SSVEP-BCIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1