Balancing structural stability and thermoelectric performance of GeMnTe2 by manipulating the complexity of cation sublattice

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-03-06 DOI:10.1016/j.mtphys.2025.101693
Yunpu Zhang, Yang Li, Wenyi Mao, Xinyue Zhang, Jiye Zhang, Jun Luo
{"title":"Balancing structural stability and thermoelectric performance of GeMnTe2 by manipulating the complexity of cation sublattice","authors":"Yunpu Zhang, Yang Li, Wenyi Mao, Xinyue Zhang, Jiye Zhang, Jun Luo","doi":"10.1016/j.mtphys.2025.101693","DOIUrl":null,"url":null,"abstract":"GeTe, known for its superior thermoelectric performance, undergoes a structural transition from low temperature rhombohedral to high temperature cubic phase at around 700 K. This phase transition is the primary obstacle to its practical applications. Alloying Mn at the Ge site can inhibit the phase transition and stabilize the cubic structure down to room temperature, while simultaneously degrading thermoelectric properties. In this work, room-temperature cubic GeMnTe<sub>2</sub>, is chosen as the matrix, and then the complexity of cation sublattice is manipulated to achieve the best balance between structural stability and thermoelectric performance. Alloying equal amount of Ag and Sb atoms at the Ge site induces lattice softening, local chemical fluctuation, and lattice anharmonicity, leading to a lower sound velocity and significantly reducing the lattice thermal conductivity. Further doping of Sb synergistically modulates the thermoelectric performance by optimizing the electrical properties and reducing the electronic thermal conductivity. Consequently, a dimensionless thermoelectric figure of merit <em>zT</em> of 1.35 at 773 K and an average <em>zT</em> of 0.8 across the temperature range of 300 - 773 K are achieved for the Ge<sub>0.575</sub>Ag<sub>0.25</sub>Sb<sub>0.375</sub>Mn<sub>0.8</sub>Te<sub>2</sub>, demonstrating its promising potential as a high-performance thermoelectric material.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"38 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2025.101693","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

GeTe, known for its superior thermoelectric performance, undergoes a structural transition from low temperature rhombohedral to high temperature cubic phase at around 700 K. This phase transition is the primary obstacle to its practical applications. Alloying Mn at the Ge site can inhibit the phase transition and stabilize the cubic structure down to room temperature, while simultaneously degrading thermoelectric properties. In this work, room-temperature cubic GeMnTe2, is chosen as the matrix, and then the complexity of cation sublattice is manipulated to achieve the best balance between structural stability and thermoelectric performance. Alloying equal amount of Ag and Sb atoms at the Ge site induces lattice softening, local chemical fluctuation, and lattice anharmonicity, leading to a lower sound velocity and significantly reducing the lattice thermal conductivity. Further doping of Sb synergistically modulates the thermoelectric performance by optimizing the electrical properties and reducing the electronic thermal conductivity. Consequently, a dimensionless thermoelectric figure of merit zT of 1.35 at 773 K and an average zT of 0.8 across the temperature range of 300 - 773 K are achieved for the Ge0.575Ag0.25Sb0.375Mn0.8Te2, demonstrating its promising potential as a high-performance thermoelectric material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Low-symmetry polymorph of GaP upends bonding paradigms of metallic high-pressure III-V compounds Accelerating high-throughput phonon calculations via machine learning universal potentials Composite Perovskite-Type ZnSnO3 Improves the Figure of Merit and Module Efficiency of Bi0.4Sb1.6Te3 Thermoelectrics Hierarchically porous coatings as durable radiative coolers with easy-cleaning property Balancing structural stability and thermoelectric performance of GeMnTe2 by manipulating the complexity of cation sublattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1