Insights into in-situ free nitrous acid induced extracellular polymeric substances changes and membrane fouling mitigation in a nitritation membrane bioreactor
{"title":"Insights into in-situ free nitrous acid induced extracellular polymeric substances changes and membrane fouling mitigation in a nitritation membrane bioreactor","authors":"Yishuai Jiang , Xiaoyuan Zhang , Hiroshige Shiota , Wun Jern Ng","doi":"10.1016/j.watres.2025.123446","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effectiveness of free nitrous acid (FNA) on mitigating membrane fouling, with the associated mechanisms, in two nitritation membrane bioreactors (MBRs) operated with <em>Nitrosomonas-</em>enriched culture. Results showed that FNA stress, regulated by pH and nitrite concentration, maintained a low-level fouling as opposed to the control MBR where trans-membrane pressure (TMP) exceeded 30 kPa. Compared to the control MBR, production of biofilm in the FNA stressed MBR was reduced by 68.1% in terms of mass and 78.2% in terms of thickness. Suspended biomass and biofilm extracellular polymeric substances (EPS) characterized by liquid chromatography (LC-OCD-OND) indicated FNA stress reduced the amount of low molecular weight neutrals and hydrophobic dissolved organic carbon. These components would have had high fouling potential. Excitation emission matrix (EEM) fluorescence contours indicated that exposure to FNA stimulated the production of tyrosine-like proteins but reduced those of SMP like and humic acid-like substances. This could have affected the adhesion between bacteria and membrane and so contributed to the reduced biofilm and fouling. X-ray photoelectron spectroscopy (XPS) analysis revealed marked differences in intensities of the main functionalities in the EPS for both sludge and biofilm, due to the oxidative effect of FNA, e.g. FNA stress resulted in more aliphatic C-OH, amines and amides while the control had more C=O, amino acids and amino sugars. This study showed that <em>in-situ</em> generated FNA could be employed to mitigate membrane fouling effectively via its biocidal and oxidative effect.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"279 ","pages":"Article 123446"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425003598","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effectiveness of free nitrous acid (FNA) on mitigating membrane fouling, with the associated mechanisms, in two nitritation membrane bioreactors (MBRs) operated with Nitrosomonas-enriched culture. Results showed that FNA stress, regulated by pH and nitrite concentration, maintained a low-level fouling as opposed to the control MBR where trans-membrane pressure (TMP) exceeded 30 kPa. Compared to the control MBR, production of biofilm in the FNA stressed MBR was reduced by 68.1% in terms of mass and 78.2% in terms of thickness. Suspended biomass and biofilm extracellular polymeric substances (EPS) characterized by liquid chromatography (LC-OCD-OND) indicated FNA stress reduced the amount of low molecular weight neutrals and hydrophobic dissolved organic carbon. These components would have had high fouling potential. Excitation emission matrix (EEM) fluorescence contours indicated that exposure to FNA stimulated the production of tyrosine-like proteins but reduced those of SMP like and humic acid-like substances. This could have affected the adhesion between bacteria and membrane and so contributed to the reduced biofilm and fouling. X-ray photoelectron spectroscopy (XPS) analysis revealed marked differences in intensities of the main functionalities in the EPS for both sludge and biofilm, due to the oxidative effect of FNA, e.g. FNA stress resulted in more aliphatic C-OH, amines and amides while the control had more C=O, amino acids and amino sugars. This study showed that in-situ generated FNA could be employed to mitigate membrane fouling effectively via its biocidal and oxidative effect.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.