Artificial Synaptic Properties in Oxygen-Based Electrochemical Random-Access Memory with CeO2 Nanoparticle Assembly as Gate Insulator for Neuromorphic Computing
Boyoung Jeong, Taeyun Noh, Jimin Han, Jiyeon Ryu, Jae-Gwan Park, Younguk Kim, Yonghoon Choi, Sehyun Lee, Jongnam Park, Tae-Sik Yoon
{"title":"Artificial Synaptic Properties in Oxygen-Based Electrochemical Random-Access Memory with CeO2 Nanoparticle Assembly as Gate Insulator for Neuromorphic Computing","authors":"Boyoung Jeong, Taeyun Noh, Jimin Han, Jiyeon Ryu, Jae-Gwan Park, Younguk Kim, Yonghoon Choi, Sehyun Lee, Jongnam Park, Tae-Sik Yoon","doi":"10.1021/acsami.5c00027","DOIUrl":null,"url":null,"abstract":"Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO<sub>2</sub> nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing. The memtransistor shows a tunable and reversible conductance change via oxygen ion exchange between ZnO and CeO<sub>2</sub> NPs upon gate voltage application. The use of CeO<sub>2</sub> enables efficient oxygen ion exchange with the ZnO channel due to its inherent property of easily absorbing and releasing oxygen ions by altering the valence state of the Ce cation. Additionally, the porous structure of the CeO<sub>2</sub> NP assembly supports the oxygen reservoir function while retaining its insulating properties as a gate insulator, ensuring reliable device operation. Also, its porous nature enhancing oxygen ion exchange permits high-speed operation within tens of microsecond range. Based on the facilitated oxygen ion exchange, a highly linear and symmetric conductance modulation is achieved with good endurance over 10<sup>4</sup> pulses and excellent nonvolatile retention. Furthermore, the memtransistor mimics representative functions of the biological synapse such as paired-pulse facilitation, short-term (STP) and long-term plasticity (LTP), and the transition from STP to LTP as repeating learning cycles.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"67 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO2 nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing. The memtransistor shows a tunable and reversible conductance change via oxygen ion exchange between ZnO and CeO2 NPs upon gate voltage application. The use of CeO2 enables efficient oxygen ion exchange with the ZnO channel due to its inherent property of easily absorbing and releasing oxygen ions by altering the valence state of the Ce cation. Additionally, the porous structure of the CeO2 NP assembly supports the oxygen reservoir function while retaining its insulating properties as a gate insulator, ensuring reliable device operation. Also, its porous nature enhancing oxygen ion exchange permits high-speed operation within tens of microsecond range. Based on the facilitated oxygen ion exchange, a highly linear and symmetric conductance modulation is achieved with good endurance over 104 pulses and excellent nonvolatile retention. Furthermore, the memtransistor mimics representative functions of the biological synapse such as paired-pulse facilitation, short-term (STP) and long-term plasticity (LTP), and the transition from STP to LTP as repeating learning cycles.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.