Spring-based mechanical metamaterials with deep-learning-accelerated design

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2025-03-06 DOI:10.1016/j.matdes.2025.113800
Xiaofeng Guo , Xiaoyang Zheng , Jiaxin Zhou , Takayuki Yamada , Yong Yi , Ikumu Watanabe
{"title":"Spring-based mechanical metamaterials with deep-learning-accelerated design","authors":"Xiaofeng Guo ,&nbsp;Xiaoyang Zheng ,&nbsp;Jiaxin Zhou ,&nbsp;Takayuki Yamada ,&nbsp;Yong Yi ,&nbsp;Ikumu Watanabe","doi":"10.1016/j.matdes.2025.113800","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus <em>E</em> ∈ (0, 350) kPa and Poisson's ratio <em>ν</em> ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113800"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Spring-based mechanical metamaterials with deep-learning-accelerated design Designing Laves-phase RFe2-type alloy with excellent magnetostrictive performance by physics-informed interpretable machine learning Electrical resistivity and self-sensing properties of low-cement limestone calcined clay cement (LC3) mortar Additive manufacturing of multi-material parts – Effect of heat treatment on thermal, electrical, and mechanical part properties of 316L/CuCrZr Friction and wear study for the new method of laser-induced cavitation micro-texturing on 7050 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1