Finger tracking for wearable VR glove using flexible rack mechanism

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2025-02-01 DOI:10.1016/j.vrih.2024.03.001
Roshan Thilakarathna, Maroay Phlernjai
{"title":"Finger tracking for wearable VR glove using flexible rack mechanism","authors":"Roshan Thilakarathna,&nbsp;Maroay Phlernjai","doi":"10.1016/j.vrih.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.</div></div><div><h3>Methods</h3><div>The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.</div></div><div><h3>Conclusions</h3><div>The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 1","pages":"Pages 1-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.

Methods

The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.

Conclusions

The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
YGC-SLAM:A visual SLAM based on improved YOLOv5 and geometric constraints for dynamic indoor environments FDCPNet:feature discrimination and context propagation network for 3D shape representation A haptic feedback glove for virtual piano interaction Finger tracking for wearable VR glove using flexible rack mechanism Chasing in virtual environment:Dynamic alignment for multi-user collaborative redirected walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1