NeuroAid™-II (MLC901) provides neuroprotection and enhances neuronal cell survival against kainic acid-induced excitotoxicity in vitro by activating the PI3K/AKT pathway
Anam Anjum, Muhammad Dain Yazid, Muhammad Fauzi Daud, Jalilah Idris, Angela Min Hwei Ng, Amaramalar Selvi Naicker, Ohnmar Htwe Ismail, Ramesh Kumar Athi Kumar, Yogeswaran Lokanathan
{"title":"NeuroAid™-II (MLC901) provides neuroprotection and enhances neuronal cell survival against kainic acid-induced excitotoxicity in vitro by activating the PI3K/AKT pathway","authors":"Anam Anjum, Muhammad Dain Yazid, Muhammad Fauzi Daud, Jalilah Idris, Angela Min Hwei Ng, Amaramalar Selvi Naicker, Ohnmar Htwe Ismail, Ramesh Kumar Athi Kumar, Yogeswaran Lokanathan","doi":"10.1186/s43094-025-00782-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the twenty-first century, in vitro models of excitotoxic injury, leveraging advanced cellular and molecular technologies, offer a promising alternative to animal studies. These models provide a more precise understanding of injury mechanisms. Method: This study utilizes kainic acid (KA), a potent glutamate receptor agonist, to induce excitotoxicity, oxidative stress, and mitochondrial dysfunction, resulting in motor neuron (MN) degeneration. Mature, differentiated NSC-34 MNs were exposed to different concentrations of KA (0.1, 0.5, and 1 mM) to induce neurodegeneration and apoptosis. Following KA treatment, cells were either treated with MLC901 (NeuroAiD™ II) or left untreated. The effects were assessed through cell viability assays, immunocytochemistry with antibiotic staining, and analysis of key markers in the PI3K/AKT signaling pathway. KA exposure resulted in significant neurodegeneration and apoptosis, as indicated by a reduction in cell viability, a decrease in Tubulin beta-III expression, and downregulation of regenerative markers, including AKT, p-AKT, and GAP43. Additionally, the apoptotic marker p-GSK3β was upregulated in KA-treated cells. In contrast, MLC901 treatment alleviated these detrimental effects. MLC901 restored Tubulin beta-III expression and reversed the downregulation of PI3K/AKT signaling markers (AKT, p-AKT, GAP43). Furthermore, MLC901 treatment led to a reduction in the apoptotic marker p-GSK3β. This study demonstrates that KA induces necrotic and apoptotic cell damage, mimicking secondary injury mechanisms typical of neurodegenerative diseases. MLC901 shows promise as a neuroprotective agent, counteracting KA-induced excitotoxicity and highlighting its potential therapeutic application in neuroprotection.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00782-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00782-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In the twenty-first century, in vitro models of excitotoxic injury, leveraging advanced cellular and molecular technologies, offer a promising alternative to animal studies. These models provide a more precise understanding of injury mechanisms. Method: This study utilizes kainic acid (KA), a potent glutamate receptor agonist, to induce excitotoxicity, oxidative stress, and mitochondrial dysfunction, resulting in motor neuron (MN) degeneration. Mature, differentiated NSC-34 MNs were exposed to different concentrations of KA (0.1, 0.5, and 1 mM) to induce neurodegeneration and apoptosis. Following KA treatment, cells were either treated with MLC901 (NeuroAiD™ II) or left untreated. The effects were assessed through cell viability assays, immunocytochemistry with antibiotic staining, and analysis of key markers in the PI3K/AKT signaling pathway. KA exposure resulted in significant neurodegeneration and apoptosis, as indicated by a reduction in cell viability, a decrease in Tubulin beta-III expression, and downregulation of regenerative markers, including AKT, p-AKT, and GAP43. Additionally, the apoptotic marker p-GSK3β was upregulated in KA-treated cells. In contrast, MLC901 treatment alleviated these detrimental effects. MLC901 restored Tubulin beta-III expression and reversed the downregulation of PI3K/AKT signaling markers (AKT, p-AKT, GAP43). Furthermore, MLC901 treatment led to a reduction in the apoptotic marker p-GSK3β. This study demonstrates that KA induces necrotic and apoptotic cell damage, mimicking secondary injury mechanisms typical of neurodegenerative diseases. MLC901 shows promise as a neuroprotective agent, counteracting KA-induced excitotoxicity and highlighting its potential therapeutic application in neuroprotection.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.