An Optimized PZT-FBG Voltage/Temperature Sensor.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-02-19 DOI:10.3390/mi16020235
Shangpeng Sun, Feiyue Ma, Yanxiao He, Bo Niu, Cheng Wang, Longcheng Dai, Zhongyang Zhao
{"title":"An Optimized PZT-FBG Voltage/Temperature Sensor.","authors":"Shangpeng Sun, Feiyue Ma, Yanxiao He, Bo Niu, Cheng Wang, Longcheng Dai, Zhongyang Zhao","doi":"10.3390/mi16020235","DOIUrl":null,"url":null,"abstract":"<p><p>The piezoelectric grating voltage sensor has garnered significant attention in the realm of intelligent sensing, attributed to its compact size, cost-effectiveness, robust electromagnetic interference (EMI) immunity, and high network integration capabilities. In this paper, we propose a PZT-FBG (piezoelectric ceramic-fiber Bragg grating) voltage-temperature demodulation optical path architecture. This scheme effectively utilizes the originally unused temperature compensation reference grating, repurposing it as a temperature measurement grating. By employing FBGs with identical or similar parameters, we experimentally validate two distinct optical path connection schemes, before and after optimization. The experimental results reveal that, when the input voltage ranges from 250 V to 1800 V at a frequency of 50 Hz, the goodness of fit for the three fundamental waveforms is 0.996, 0.999, and 0.992, respectively. Furthermore, the sensor's frequency response was tested across a frequency range of 50 Hz to 20 kHz, demonstrating that the measurement system can effectively respond within the sensor's operational frequency range. Additionally, temperature measurement experiments showed a goodness of fit of 0.997 for the central wavelength of the FBG as the temperature increased. This research indicates that the improved optical path connection method not only accomplishes a synchronous demodulation of both temperature and voltage parameters but also markedly enhances the linearity and resolution of the voltage sensor. This discovery offers novel insights for further refining sensor performance and broadening the applications of optical voltage sensors.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020235","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The piezoelectric grating voltage sensor has garnered significant attention in the realm of intelligent sensing, attributed to its compact size, cost-effectiveness, robust electromagnetic interference (EMI) immunity, and high network integration capabilities. In this paper, we propose a PZT-FBG (piezoelectric ceramic-fiber Bragg grating) voltage-temperature demodulation optical path architecture. This scheme effectively utilizes the originally unused temperature compensation reference grating, repurposing it as a temperature measurement grating. By employing FBGs with identical or similar parameters, we experimentally validate two distinct optical path connection schemes, before and after optimization. The experimental results reveal that, when the input voltage ranges from 250 V to 1800 V at a frequency of 50 Hz, the goodness of fit for the three fundamental waveforms is 0.996, 0.999, and 0.992, respectively. Furthermore, the sensor's frequency response was tested across a frequency range of 50 Hz to 20 kHz, demonstrating that the measurement system can effectively respond within the sensor's operational frequency range. Additionally, temperature measurement experiments showed a goodness of fit of 0.997 for the central wavelength of the FBG as the temperature increased. This research indicates that the improved optical path connection method not only accomplishes a synchronous demodulation of both temperature and voltage parameters but also markedly enhances the linearity and resolution of the voltage sensor. This discovery offers novel insights for further refining sensor performance and broadening the applications of optical voltage sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化的 PZT-FBG 电压/温度传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1