Tayyaba Saeed, Nousheen Bibi, Ashfaq Ahmad, Saadullah Khan, Muhammad Ansar, Naveed Wasif, Umm-E- Kalsoom
{"title":"A Novel Biallelic Variant in IHH Causing Acrocapitofemoral Dysplasia in a Pakistani Family.","authors":"Tayyaba Saeed, Nousheen Bibi, Ashfaq Ahmad, Saadullah Khan, Muhammad Ansar, Naveed Wasif, Umm-E- Kalsoom","doi":"10.1002/mgg3.70085","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acrocapitofemoral dysplasia (ACFD) is a rare autosomal recessive disorder, characterized by postnatal onset of disproportionate short stature with short limbs, brachydactyly, cone-shaped epiphysis, narrow thorax, and relatively large head. To date, only three homozygous missense mutations have been reported in the signaling amino terminal domain (201-308 amino acids) of the IHH gene in three ACFD families from Belgian, Dutch, and Turkish ethnicities.</p><p><strong>Methods: </strong>In the present study, we have investigated two patients in a Pakistani family affected with ACFD. Whole exome sequencing (WES) followed by Sanger sequencing was carried out for mutational screening. The variant was further validated by in silico modeling and molecular dynamics simulation analysis.</p><p><strong>Results: </strong>Data analysis revealed a novel homozygous missense variant [c.518C>A; p.(Ala173Asp)] in exon 2 of the IHH (NM_002181.4) gene. The variant segregated within the family and was not observed in unaffected ethnically matched controls. In silico modeling and dynamic simulation analysis revealed that the variant disturbed the core structure of the domain and destabilized the loop region and the region surrounding the variant.</p><p><strong>Conclusion: </strong>This study reports the first case of ACFD from Pakistan and identifies the fourth novel missense variant in the IHH gene that led to the broadening of the phenotypic and genotypic spectrum of ACFD.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"13 3","pages":"e70085"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acrocapitofemoral dysplasia (ACFD) is a rare autosomal recessive disorder, characterized by postnatal onset of disproportionate short stature with short limbs, brachydactyly, cone-shaped epiphysis, narrow thorax, and relatively large head. To date, only three homozygous missense mutations have been reported in the signaling amino terminal domain (201-308 amino acids) of the IHH gene in three ACFD families from Belgian, Dutch, and Turkish ethnicities.
Methods: In the present study, we have investigated two patients in a Pakistani family affected with ACFD. Whole exome sequencing (WES) followed by Sanger sequencing was carried out for mutational screening. The variant was further validated by in silico modeling and molecular dynamics simulation analysis.
Results: Data analysis revealed a novel homozygous missense variant [c.518C>A; p.(Ala173Asp)] in exon 2 of the IHH (NM_002181.4) gene. The variant segregated within the family and was not observed in unaffected ethnically matched controls. In silico modeling and dynamic simulation analysis revealed that the variant disturbed the core structure of the domain and destabilized the loop region and the region surrounding the variant.
Conclusion: This study reports the first case of ACFD from Pakistan and identifies the fourth novel missense variant in the IHH gene that led to the broadening of the phenotypic and genotypic spectrum of ACFD.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.