Saba Ejaz, Imran Shah, Shahid Aziz, Gul Hassan, Ahmed Shuja, Muhammad Asif Khan, Dong-Won Jung
{"title":"Fabrication and Characterization of a Flexible Polyurethane-Based Triboelectric Nanogenerator for a Harvesting Energy System.","authors":"Saba Ejaz, Imran Shah, Shahid Aziz, Gul Hassan, Ahmed Shuja, Muhammad Asif Khan, Dong-Won Jung","doi":"10.3390/mi16020230","DOIUrl":null,"url":null,"abstract":"<p><p>Powering wearable and portable devices, triboelectric nanogenerators (TENGs) are a considerably promising technology. Low-cost production, ease of fabrication, optimal efficiency, and high output performance are always key concerns in developing energy harvesting technologies. Optimum efficiency and high output are always key concerns. This research addresses the ongoing challenge of raising efficient, flexible, and lightweight energy harvesting systems for recent wearable technologies. In this research, a triboelectric nanogenerator is proposed for harvesting the triboelectric effect. Using polyurethane (PU), a bendable TENG that is in the vertical contact separation mode was developed. UV-curable PU forms the basis of TENGs. A sponge, repurposed from landfill waste, acts by means of a spacer to maintain a consistent air gap between the tribo-layers for enhanced triboelectrification. The triboelectric nanogenerators formed a V<sub>oc</sub> approaching 500 V and a current of ~2 µA and also showed high performance with a power density of 8.53 W/m<sup>2</sup>. In addition, the triboelectric nanogenerator can light LEDs and charge capacitors, making it a self-powered energy source for portable devices, Wi-Fi, and monitoring systems. The proposed TENG provides a capable solution for sustainable, self-powered wearable electronics and has the potential for further development in energy-efficient and eco-friendly applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020230","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Powering wearable and portable devices, triboelectric nanogenerators (TENGs) are a considerably promising technology. Low-cost production, ease of fabrication, optimal efficiency, and high output performance are always key concerns in developing energy harvesting technologies. Optimum efficiency and high output are always key concerns. This research addresses the ongoing challenge of raising efficient, flexible, and lightweight energy harvesting systems for recent wearable technologies. In this research, a triboelectric nanogenerator is proposed for harvesting the triboelectric effect. Using polyurethane (PU), a bendable TENG that is in the vertical contact separation mode was developed. UV-curable PU forms the basis of TENGs. A sponge, repurposed from landfill waste, acts by means of a spacer to maintain a consistent air gap between the tribo-layers for enhanced triboelectrification. The triboelectric nanogenerators formed a Voc approaching 500 V and a current of ~2 µA and also showed high performance with a power density of 8.53 W/m2. In addition, the triboelectric nanogenerator can light LEDs and charge capacitors, making it a self-powered energy source for portable devices, Wi-Fi, and monitoring systems. The proposed TENG provides a capable solution for sustainable, self-powered wearable electronics and has the potential for further development in energy-efficient and eco-friendly applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.