Silk Fibroin-Based Hydrogels Supplemented with Decellularized Extracellular Matrix and Gelatin Facilitate 3D Bioprinting for Meniscus Tissue Engineering.

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2025-03-06 DOI:10.1002/mabi.202400515
Jennifer Fritz, Anna-Christina Moser, Alexander Otahal, Heinz Redl, Andreas H Teuschl-Woller, Karl H Schneider, Stefan Nehrer
{"title":"Silk Fibroin-Based Hydrogels Supplemented with Decellularized Extracellular Matrix and Gelatin Facilitate 3D Bioprinting for Meniscus Tissue Engineering.","authors":"Jennifer Fritz, Anna-Christina Moser, Alexander Otahal, Heinz Redl, Andreas H Teuschl-Woller, Karl H Schneider, Stefan Nehrer","doi":"10.1002/mabi.202400515","DOIUrl":null,"url":null,"abstract":"<p><p>The human meniscus transmits high axial loads through the knee joint. This function is compromised upon meniscus injury or treatment by meniscectomy. 3D printing of meniscus implants has emerged as a promising alternative treatment, as it allows for precise mimicry of the meniscus architecture. In this study, silk fibroin (SF) known for its excellent mechanical properties is used to fabricate hydrogels for 3D bioprinting with infrapatellar fat pad-derived mesenchymal stem cells (IFP-MSCs). Extracellular matrix (ECM) derived from bovine menisci and gelatin are added to 10% SF to promote cell adhesion and printability. To examine the mutual influence of cells and biomaterial, experiments are conducted with and without IFP-MSCs. The cells are found to influence crosslinking, β-sheet formation, and mechanical strength. Variations between printed and casted hydrogels are identified for cell number, metabolic activity, secondary structure, and mechanical strength. Remarkably, the printed hydrogels with IFP-MSCs exhibited a compressive Young's modulus of 0.16 MPa, which closely resembled that of human osteoarthritic menisci. After initial low viability, IFP-MSCs in the casted hydrogels are able to proliferate within the biomaterial. The chondrogenic differentiation medium upregulated the expression of chondrogenic markers in the casted hydrogels, indicating promising prospects for future meniscus tissue engineering (TE).</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400515"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The human meniscus transmits high axial loads through the knee joint. This function is compromised upon meniscus injury or treatment by meniscectomy. 3D printing of meniscus implants has emerged as a promising alternative treatment, as it allows for precise mimicry of the meniscus architecture. In this study, silk fibroin (SF) known for its excellent mechanical properties is used to fabricate hydrogels for 3D bioprinting with infrapatellar fat pad-derived mesenchymal stem cells (IFP-MSCs). Extracellular matrix (ECM) derived from bovine menisci and gelatin are added to 10% SF to promote cell adhesion and printability. To examine the mutual influence of cells and biomaterial, experiments are conducted with and without IFP-MSCs. The cells are found to influence crosslinking, β-sheet formation, and mechanical strength. Variations between printed and casted hydrogels are identified for cell number, metabolic activity, secondary structure, and mechanical strength. Remarkably, the printed hydrogels with IFP-MSCs exhibited a compressive Young's modulus of 0.16 MPa, which closely resembled that of human osteoarthritic menisci. After initial low viability, IFP-MSCs in the casted hydrogels are able to proliferate within the biomaterial. The chondrogenic differentiation medium upregulated the expression of chondrogenic markers in the casted hydrogels, indicating promising prospects for future meniscus tissue engineering (TE).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
Cellular Behaviors of Human Dermal Fibroblasts on Pyrolytically Stripped Carbon Nanofiber's Surface Issue Information: Macromol. Biosci. 3/2025 RETRACTION: Generation of Haploid Spermatids on Silk Fibroin-Alginate-Laminin-Based Porous 3D Scaffolds. Combination of Dendrimers and Exosomes: Implications for Biomedical Applications. Silk Fibroin-Based Hydrogels Supplemented with Decellularized Extracellular Matrix and Gelatin Facilitate 3D Bioprinting for Meniscus Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1