Recent Advances in AlN-Based Acoustic Wave Resonators.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-02-11 DOI:10.3390/mi16020205
Hao Lu, Xiaorun Hao, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Jie Dong, Xiaohua Ma
{"title":"Recent Advances in AlN-Based Acoustic Wave Resonators.","authors":"Hao Lu, Xiaorun Hao, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Jie Dong, Xiaohua Ma","doi":"10.3390/mi16020205","DOIUrl":null,"url":null,"abstract":"<p><p>AlN-based bulk acoustic wave (BAW) filters have emerged as crucial components in 5G communication due to their high frequency, wide bandwidth, high power capacity, and compact size. This paper mainly reviews the basic principles and recent research advances of AlN-based BAW resonators, which are the backbone of BAW filters. We begin by summarizing the epitaxial growth of single-crystal, polycrystalline, and doped AlN films, with a focus on single-crystal AlN and ScAlN, which are currently the most popular. The discussion then extends to the structure and fabrication of BAW resonators, including the basic solidly mounted resonator (SMR) and the film bulk acoustic resonator (FBAR). The new Xtended Bulk Acoustic Wave (XBAW) technology is highlighted as an effective method to enhance filter bandwidth. Hybrid SAW/BAW resonators (HSBRs) combine the benefits of BAW and SAW resonators to significantly reduce temperature drift. The paper further explores the application of BAW resonators in ladder and lattice BAW filters, highlighting advancements in their design improvements. The frequency-reconfigurable BAW filter, which broadens the filter's application range, has garnered substantial attention from researchers. Additionally, optimization algorithms for designing AlN-based BAW filters are outlined to reduce design time and improve efficiency. This work aims to serve as a reference for future research on AlN-based BAW filters and to provide insight for similar device studies.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020205","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

AlN-based bulk acoustic wave (BAW) filters have emerged as crucial components in 5G communication due to their high frequency, wide bandwidth, high power capacity, and compact size. This paper mainly reviews the basic principles and recent research advances of AlN-based BAW resonators, which are the backbone of BAW filters. We begin by summarizing the epitaxial growth of single-crystal, polycrystalline, and doped AlN films, with a focus on single-crystal AlN and ScAlN, which are currently the most popular. The discussion then extends to the structure and fabrication of BAW resonators, including the basic solidly mounted resonator (SMR) and the film bulk acoustic resonator (FBAR). The new Xtended Bulk Acoustic Wave (XBAW) technology is highlighted as an effective method to enhance filter bandwidth. Hybrid SAW/BAW resonators (HSBRs) combine the benefits of BAW and SAW resonators to significantly reduce temperature drift. The paper further explores the application of BAW resonators in ladder and lattice BAW filters, highlighting advancements in their design improvements. The frequency-reconfigurable BAW filter, which broadens the filter's application range, has garnered substantial attention from researchers. Additionally, optimization algorithms for designing AlN-based BAW filters are outlined to reduce design time and improve efficiency. This work aims to serve as a reference for future research on AlN-based BAW filters and to provide insight for similar device studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1