Reliability Analysis of Complex PCB Assemblies Under Temperature Cycling and Random Vibration.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-02-13 DOI:10.3390/mi16020212
Wenchao Tian, Feiyang Li, Mang He, Haoyue Ji, Si Chen
{"title":"Reliability Analysis of Complex PCB Assemblies Under Temperature Cycling and Random Vibration.","authors":"Wenchao Tian, Feiyang Li, Mang He, Haoyue Ji, Si Chen","doi":"10.3390/mi16020212","DOIUrl":null,"url":null,"abstract":"<p><p>This paper examined the reliability of complex PCB assemblies under random vibration and temperature cycling, which are two primary causes of assembly failure. A combination of finite element simulation and environmental testing was employed to investigate the effects of different reinforcement methods and solder joint morphology on assembly reliability. The linear accumulation of damage was utilized to predict assembly failure, and the predicted failure damage was compared with the damage extracted post-testing to validate the simulation analysis. The results indicate that SAC305 solder exhibits greater strength than Sn63Pb37 solder in withstanding temperature cycling fatigue, yet is weaker than Sn63Pb37 solder in withstanding random vibration fatigue. When the solder is Sn63Pb37, the temperature cycling life of the assembly with the bottom filled and the corners fixed is reduced by 92.3% and 99.3%, respectively, compared to the unreinforced method, while the random vibration life is enhanced by 84 times and 3.9 times, respectively. An increase in pad diameter is advantageous for improving the random vibration life of the assembly, but results in a decrease in the temperature cycling life. When the lower pad diameter ranges from 0.35 mm to 0.55 mm, the assembly temperature cycling life decreases by 28.83%, 82.03%, 90.66%, and 91.22% with the increase of the lower pad diameter, and the random vibration life improves by 4.8 times, 9.5 times, 20.4 times, and 33.6 times, respectively. The predicted locations of vulnerable solder joints for the assembly are consistent with the experimental results, and the failure prediction accuracy of the assembly is 88.89%.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020212","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examined the reliability of complex PCB assemblies under random vibration and temperature cycling, which are two primary causes of assembly failure. A combination of finite element simulation and environmental testing was employed to investigate the effects of different reinforcement methods and solder joint morphology on assembly reliability. The linear accumulation of damage was utilized to predict assembly failure, and the predicted failure damage was compared with the damage extracted post-testing to validate the simulation analysis. The results indicate that SAC305 solder exhibits greater strength than Sn63Pb37 solder in withstanding temperature cycling fatigue, yet is weaker than Sn63Pb37 solder in withstanding random vibration fatigue. When the solder is Sn63Pb37, the temperature cycling life of the assembly with the bottom filled and the corners fixed is reduced by 92.3% and 99.3%, respectively, compared to the unreinforced method, while the random vibration life is enhanced by 84 times and 3.9 times, respectively. An increase in pad diameter is advantageous for improving the random vibration life of the assembly, but results in a decrease in the temperature cycling life. When the lower pad diameter ranges from 0.35 mm to 0.55 mm, the assembly temperature cycling life decreases by 28.83%, 82.03%, 90.66%, and 91.22% with the increase of the lower pad diameter, and the random vibration life improves by 4.8 times, 9.5 times, 20.4 times, and 33.6 times, respectively. The predicted locations of vulnerable solder joints for the assembly are consistent with the experimental results, and the failure prediction accuracy of the assembly is 88.89%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1