High-Pulse-Repetition-Rate Eye-Safe Raman Laser with Acousto-Optic Q-Switched Device.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-02-16 DOI:10.3390/mi16020222
Yu-Hsin Hsu, Song-Qing Lin, Dai-Jun Liu, Hsing-Chih Liang, Yung-Fu Chen
{"title":"High-Pulse-Repetition-Rate Eye-Safe Raman Laser with Acousto-Optic Q-Switched Device.","authors":"Yu-Hsin Hsu, Song-Qing Lin, Dai-Jun Liu, Hsing-Chih Liang, Yung-Fu Chen","doi":"10.3390/mi16020222","DOIUrl":null,"url":null,"abstract":"<p><p>The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO<sub>4</sub> and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is systematically explored for the repetition rate between 80 and 150 kHz. The separate configuration is used to construct the resonant cavities for the fundamental and Stokes waves to achieve a pulse width that is as short as possible. Under the optimal alignment, the average output power can exceed 5.0 W at a pump power of 30 W for a repetition rate within 100-150 kHz with a gate-open time of 0.5 μs. In addition, the output peak power can be greater than 10 kW for a pulse repetition rate between 80 and 120 kHz. The optical-to-optical conversion efficiency is up to 16.7%, which is better than that obtained by the Nd:YVO<sub>4</sub>/YVO<sub>4</sub> system.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO4 and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is systematically explored for the repetition rate between 80 and 150 kHz. The separate configuration is used to construct the resonant cavities for the fundamental and Stokes waves to achieve a pulse width that is as short as possible. Under the optimal alignment, the average output power can exceed 5.0 W at a pump power of 30 W for a repetition rate within 100-150 kHz with a gate-open time of 0.5 μs. In addition, the output peak power can be greater than 10 kW for a pulse repetition rate between 80 and 120 kHz. The optical-to-optical conversion efficiency is up to 16.7%, which is better than that obtained by the Nd:YVO4/YVO4 system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1