{"title":"High-Pulse-Repetition-Rate Eye-Safe Raman Laser with Acousto-Optic Q-Switched Device.","authors":"Yu-Hsin Hsu, Song-Qing Lin, Dai-Jun Liu, Hsing-Chih Liang, Yung-Fu Chen","doi":"10.3390/mi16020222","DOIUrl":null,"url":null,"abstract":"<p><p>The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO<sub>4</sub> and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is systematically explored for the repetition rate between 80 and 150 kHz. The separate configuration is used to construct the resonant cavities for the fundamental and Stokes waves to achieve a pulse width that is as short as possible. Under the optimal alignment, the average output power can exceed 5.0 W at a pump power of 30 W for a repetition rate within 100-150 kHz with a gate-open time of 0.5 μs. In addition, the output peak power can be greater than 10 kW for a pulse repetition rate between 80 and 120 kHz. The optical-to-optical conversion efficiency is up to 16.7%, which is better than that obtained by the Nd:YVO<sub>4</sub>/YVO<sub>4</sub> system.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO4 and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is systematically explored for the repetition rate between 80 and 150 kHz. The separate configuration is used to construct the resonant cavities for the fundamental and Stokes waves to achieve a pulse width that is as short as possible. Under the optimal alignment, the average output power can exceed 5.0 W at a pump power of 30 W for a repetition rate within 100-150 kHz with a gate-open time of 0.5 μs. In addition, the output peak power can be greater than 10 kW for a pulse repetition rate between 80 and 120 kHz. The optical-to-optical conversion efficiency is up to 16.7%, which is better than that obtained by the Nd:YVO4/YVO4 system.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.