Impact of Layer Materials, Their Thicknesses, and Their Reflectivities on Emission Color and NVIS Compatibility in OLED Devices for Avionic Display Applications.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-02-07 DOI:10.3390/mi16020191
Esin Uçar, Alper Ülkü, Halil Mert Kaya, Ramis Berkay Serin, Rifat Kaçar, Ahmet Yavuz Oral, Ebru Menşur
{"title":"Impact of Layer Materials, Their Thicknesses, and Their Reflectivities on Emission Color and NVIS Compatibility in OLED Devices for Avionic Display Applications.","authors":"Esin Uçar, Alper Ülkü, Halil Mert Kaya, Ramis Berkay Serin, Rifat Kaçar, Ahmet Yavuz Oral, Ebru Menşur","doi":"10.3390/mi16020191","DOIUrl":null,"url":null,"abstract":"<p><p>Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging Systems (NVISs), as compatibility is critical. Herein, we report the effects of different OLED device layer materials and thicknesses such as the hole injection layer (HIL), hole transport layer (HTL), and electron transport layer (ETL) on the color coordinates, luminance, and efficiency of OLED devices designed for night vision (NVIS) compatibility. In this study, simulation tools like SETFOS<sup>®</sup> (Semi-conducting Emissive Thin Film Optics Simulator), MATLAB<sup>®</sup>, and LightTools<sup>®</sup> (Illumination Design Software) were used to verify and validate the luminance, luminance efficiency, and chromaticity coordinates of the proposed NVIS-OLED devices. We modeled the OLED device using SETFOS<sup>®</sup>, then the selection of materials for each layer for an optimal electron-hole balance was performed in the same tool. The effective reflectivity of multiple OLED layers was determined in MATLAB<sup>®</sup> in addition to an optimal device efficiency calculation in SETFOS<sup>®</sup>. The optical validation of output luminance and luminous efficiency was performed in LightTools<sup>®</sup>. Through a series of simulations for a green-emitting OLED device, we observed significant shifts in color coordinates, particularly towards the yellow spectrum, when the ETL materials and their thicknesses varied between 1 nm and 200 nm, whereas a change in the thickness of the HIL and HTL materials had a negligible impact on the color coordinates. While the critical role of ETL in color tuning and the emission characteristics of OLEDs is highlighted, our results also suggested a degree of flexibility in material selection for the HIL and HTL, as they minimally affected the color coordinates of emission. We validated via a combination of SETFOS<sup>®</sup>, MATLAB<sup>®</sup>, and LightTools<sup>®</sup> that when the ETL (3TPYMB) material thickness is optimized to 51 nm, the cathode reflectivity via the ETL-EIL stack became the minimum enabling output luminance of 3470 cd/m2 through our emissive layer within the Glass/ITO/MoO<sub>3</sub>/TAPC/(CBP:Ir(ppy)<sub>3</sub>)/3TPYMB/LiF/Aluminum OLED stack architecture, also yielding 34.73 cd/A of current efficiency under 10 mA/cm<sup>2</sup> of current density. We infer that when stack layer thicknesses are optimized with respect to their reflectivity properties, better performances are achieved.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020191","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging Systems (NVISs), as compatibility is critical. Herein, we report the effects of different OLED device layer materials and thicknesses such as the hole injection layer (HIL), hole transport layer (HTL), and electron transport layer (ETL) on the color coordinates, luminance, and efficiency of OLED devices designed for night vision (NVIS) compatibility. In this study, simulation tools like SETFOS® (Semi-conducting Emissive Thin Film Optics Simulator), MATLAB®, and LightTools® (Illumination Design Software) were used to verify and validate the luminance, luminance efficiency, and chromaticity coordinates of the proposed NVIS-OLED devices. We modeled the OLED device using SETFOS®, then the selection of materials for each layer for an optimal electron-hole balance was performed in the same tool. The effective reflectivity of multiple OLED layers was determined in MATLAB® in addition to an optimal device efficiency calculation in SETFOS®. The optical validation of output luminance and luminous efficiency was performed in LightTools®. Through a series of simulations for a green-emitting OLED device, we observed significant shifts in color coordinates, particularly towards the yellow spectrum, when the ETL materials and their thicknesses varied between 1 nm and 200 nm, whereas a change in the thickness of the HIL and HTL materials had a negligible impact on the color coordinates. While the critical role of ETL in color tuning and the emission characteristics of OLEDs is highlighted, our results also suggested a degree of flexibility in material selection for the HIL and HTL, as they minimally affected the color coordinates of emission. We validated via a combination of SETFOS®, MATLAB®, and LightTools® that when the ETL (3TPYMB) material thickness is optimized to 51 nm, the cathode reflectivity via the ETL-EIL stack became the minimum enabling output luminance of 3470 cd/m2 through our emissive layer within the Glass/ITO/MoO3/TAPC/(CBP:Ir(ppy)3)/3TPYMB/LiF/Aluminum OLED stack architecture, also yielding 34.73 cd/A of current efficiency under 10 mA/cm2 of current density. We infer that when stack layer thicknesses are optimized with respect to their reflectivity properties, better performances are achieved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1