{"title":"Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb<sub>2</sub>S<sub>3</sub>.","authors":"Yaoyao Li, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou, Weijia Shao","doi":"10.3390/mi16020146","DOIUrl":null,"url":null,"abstract":"<p><p>Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric bias that can be used to regulate hot-electron harvesting at specified working wavelengths. However, the reliance on bias hampers the flexibility in device operations. In this study, we propose a purely planar design of HE PDs that contains the phase-change material Sb<sub>2</sub>S<sub>3</sub>, realizing reversibly alterable hot-electron photodetection without altering the working wavelengths. Optical simulations show that the designed device exhibits strong absorptance (>0.95) at the identical resonance wavelengths due to the excitations of Tamm plasmons (TPs), regardless of Sb<sub>2</sub>S<sub>3</sub> phases. Detailed electrical calculations demonstrate that, by inducing Sb<sub>2</sub>S<sub>3</sub> transitions between crystalline and amorphous phases back and forth, the device responsivities at TP wavelengths can be reversibly altered between 59.9 nA/mW to 128.7 nA/mW. Moreover, when device structural parameters are variable and biases are involved, the reversibly alterable hot-electron photodetection at specified TP wavelengths is maintained.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric bias that can be used to regulate hot-electron harvesting at specified working wavelengths. However, the reliance on bias hampers the flexibility in device operations. In this study, we propose a purely planar design of HE PDs that contains the phase-change material Sb2S3, realizing reversibly alterable hot-electron photodetection without altering the working wavelengths. Optical simulations show that the designed device exhibits strong absorptance (>0.95) at the identical resonance wavelengths due to the excitations of Tamm plasmons (TPs), regardless of Sb2S3 phases. Detailed electrical calculations demonstrate that, by inducing Sb2S3 transitions between crystalline and amorphous phases back and forth, the device responsivities at TP wavelengths can be reversibly altered between 59.9 nA/mW to 128.7 nA/mW. Moreover, when device structural parameters are variable and biases are involved, the reversibly alterable hot-electron photodetection at specified TP wavelengths is maintained.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.