Bar Favelukis, Barak Ratzker, Rebeca Miyar, Jürgen Jopp, Alexander Upcher, Pini Shekhter, Nitzan Maman, Maxim Sokol
{"title":"Without a grain of salt: micropatterning clean MXene thin-film electronics.","authors":"Bar Favelukis, Barak Ratzker, Rebeca Miyar, Jürgen Jopp, Alexander Upcher, Pini Shekhter, Nitzan Maman, Maxim Sokol","doi":"10.1039/d4na00983e","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes exhibit remarkable electrical, mechanical, and thermal properties, positioning them as strong candidates for high-performance electrodes and interconnects. Deposited 2D MXene thin-films suffer from a persistent issue of crystalline salt residues that originate from dissolved intercalation salts used for the exfoliation process during synthesis. These 3D salt by-products can cause issues during further nanofabrication processing and be detrimental to integrated device performance. This study introduces a three-step approach involving spin-coating deposition, HCl spin-cleaning, and lift-off. Rigorous morphological characterization of the patterned MXene was performed, confirming that the spin-cleaning step effectively removed all halide salt residues. Transparent sub-10 nm-thick MXene thin-film electrodes, down to a width of 5 μm with ∼1.5 μm resolution, were produced. The electrical properties were probed, showcasing exceptional conductivity (∼1350 S cm<sup>-1</sup> for a 50 μm-wide electrode) with high photosensitivity at the MXene-Si junction. The proposed method yields clean patterned MXene thin films, enabling easier integration of MXene or other 2D materials into future microelectronic devices.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00983e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes exhibit remarkable electrical, mechanical, and thermal properties, positioning them as strong candidates for high-performance electrodes and interconnects. Deposited 2D MXene thin-films suffer from a persistent issue of crystalline salt residues that originate from dissolved intercalation salts used for the exfoliation process during synthesis. These 3D salt by-products can cause issues during further nanofabrication processing and be detrimental to integrated device performance. This study introduces a three-step approach involving spin-coating deposition, HCl spin-cleaning, and lift-off. Rigorous morphological characterization of the patterned MXene was performed, confirming that the spin-cleaning step effectively removed all halide salt residues. Transparent sub-10 nm-thick MXene thin-film electrodes, down to a width of 5 μm with ∼1.5 μm resolution, were produced. The electrical properties were probed, showcasing exceptional conductivity (∼1350 S cm-1 for a 50 μm-wide electrode) with high photosensitivity at the MXene-Si junction. The proposed method yields clean patterned MXene thin films, enabling easier integration of MXene or other 2D materials into future microelectronic devices.