Determining the Importance of Lifestyle Risk Factors in Predicting Binge Eating Disorder After Bariatric Surgery Using Machine Learning Models and Lifestyle Scores.
{"title":"Determining the Importance of Lifestyle Risk Factors in Predicting Binge Eating Disorder After Bariatric Surgery Using Machine Learning Models and Lifestyle Scores.","authors":"Maryam Mousavi, Mastaneh Rajabian Tabesh, Seyyedeh Mahila Moghadami, Atoosa Saidpour, Soodeh Razeghi Jahromi","doi":"10.1007/s11695-025-07765-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study was conducted to assess the association between lifestyle risk factors (LRF) and odds of binge eating disorder (BED) 2 years post laparoscopic sleeve gastrectomy (LSG) using lifestyle score (LS) and machine learning (ML) models.</p><p><strong>Methods: </strong>In the current study, 450 individuals who had undergone LSG 2 years prior to participation were enrolled. BED was assessed using BES questionnaire. The collected data for LRF included smoking, alcohol consumption, physical activity (PA), fruit and vegetable intake, overweight/obesity, and percentage excess weight loss (EWL%). ML models included: logistic regression (LG), KNN, decision tree (DT), random forest (RF), SVM, XGBoost, and deep learning or artificial neurol network (ANN). Additionally, accumulative LRF was assessed using LS.</p><p><strong>Results: </strong>One hundred and twenty-two subjects (26.1%) met the criteria for BED 2 years after LSG. Participants who were in the highest quartile of the lifestyle score (nearly worst) had significantly three times higher odds of BED compared to the lowest quartile (nearly optimal) (p trend = 0.01). Furthermore, RF, LG, SVM, and ANN had the highest accuracy (about 75%) in predicting BED compared to other ML models (between 60 and 72%). Among the lifestyle risk factors, insufficient PA, lower vegetable consumption, a higher level of BMI, and lower EWL% were independently associated with BED (p < 0.05).</p><p><strong>Conclusions: </strong>Our findings indicate that poor lifestyle patterns are associated with the development of BED, in contrast to non-BED individuals. Given the prevalence of this disorder among LSG participants, lifestyle risk factors must receive special attention after BS.</p>","PeriodicalId":19460,"journal":{"name":"Obesity Surgery","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obesity Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11695-025-07765-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study was conducted to assess the association between lifestyle risk factors (LRF) and odds of binge eating disorder (BED) 2 years post laparoscopic sleeve gastrectomy (LSG) using lifestyle score (LS) and machine learning (ML) models.
Methods: In the current study, 450 individuals who had undergone LSG 2 years prior to participation were enrolled. BED was assessed using BES questionnaire. The collected data for LRF included smoking, alcohol consumption, physical activity (PA), fruit and vegetable intake, overweight/obesity, and percentage excess weight loss (EWL%). ML models included: logistic regression (LG), KNN, decision tree (DT), random forest (RF), SVM, XGBoost, and deep learning or artificial neurol network (ANN). Additionally, accumulative LRF was assessed using LS.
Results: One hundred and twenty-two subjects (26.1%) met the criteria for BED 2 years after LSG. Participants who were in the highest quartile of the lifestyle score (nearly worst) had significantly three times higher odds of BED compared to the lowest quartile (nearly optimal) (p trend = 0.01). Furthermore, RF, LG, SVM, and ANN had the highest accuracy (about 75%) in predicting BED compared to other ML models (between 60 and 72%). Among the lifestyle risk factors, insufficient PA, lower vegetable consumption, a higher level of BMI, and lower EWL% were independently associated with BED (p < 0.05).
Conclusions: Our findings indicate that poor lifestyle patterns are associated with the development of BED, in contrast to non-BED individuals. Given the prevalence of this disorder among LSG participants, lifestyle risk factors must receive special attention after BS.
期刊介绍:
Obesity Surgery is the official journal of the International Federation for the Surgery of Obesity and metabolic disorders (IFSO). A journal for bariatric/metabolic surgeons, Obesity Surgery provides an international, interdisciplinary forum for communicating the latest research, surgical and laparoscopic techniques, for treatment of massive obesity and metabolic disorders. Topics covered include original research, clinical reports, current status, guidelines, historical notes, invited commentaries, letters to the editor, medicolegal issues, meeting abstracts, modern surgery/technical innovations, new concepts, reviews, scholarly presentations and opinions.
Obesity Surgery benefits surgeons performing obesity/metabolic surgery, general surgeons and surgical residents, endoscopists, anesthetists, support staff, nurses, dietitians, psychiatrists, psychologists, plastic surgeons, internists including endocrinologists and diabetologists, nutritional scientists, and those dealing with eating disorders.