{"title":"T cell-derived adenosine regulates fibroblast IL-6 formation via A<sub>2B</sub> receptors in the infarcted heart.","authors":"Tong Jiao, Zhichao Zhou","doi":"10.1007/s11302-025-10081-y","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated interleukin-6 (IL-6) levels are linked to an increased risk of cardiovascular mortality in myocardial infarction (MI). Targeting IL-6 and its downstream signalling pathways represents a therapeutic strategy; however, its cellular sources and regulatory mechanisms of IL-6 remain incompletely understood. In this study, Alter and colleagues investigated the primary cell type that produces IL-6 in post-MI murine heart and the role of purinergic signalling in regulating IL-6 formation. Using cellular and mouse models, the authors identified cardiac fibroblasts as the predominant source of IL-6. Further analysis revealed that the IL-6 formation in cardiac fibroblasts is regulated by adenosine A<sub>2B</sub> receptors. Of further importance, they elucidated that T cells highly express CD73, leading to significant adenosine formation, which in turn enhances IL-6 production via Gq activation in cardiac fibroblasts following MI. These findings reveal a dynamic interplay between immune cells and fibroblasts in shaping the post-MI inflammatory response. This study suggests the adenosine-A<sub>2B</sub> receptor-IL6 axis as a potential therapeutic target to mitigate inflammation and improve cardiomyocytes salvage in MI.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10081-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Elevated interleukin-6 (IL-6) levels are linked to an increased risk of cardiovascular mortality in myocardial infarction (MI). Targeting IL-6 and its downstream signalling pathways represents a therapeutic strategy; however, its cellular sources and regulatory mechanisms of IL-6 remain incompletely understood. In this study, Alter and colleagues investigated the primary cell type that produces IL-6 in post-MI murine heart and the role of purinergic signalling in regulating IL-6 formation. Using cellular and mouse models, the authors identified cardiac fibroblasts as the predominant source of IL-6. Further analysis revealed that the IL-6 formation in cardiac fibroblasts is regulated by adenosine A2B receptors. Of further importance, they elucidated that T cells highly express CD73, leading to significant adenosine formation, which in turn enhances IL-6 production via Gq activation in cardiac fibroblasts following MI. These findings reveal a dynamic interplay between immune cells and fibroblasts in shaping the post-MI inflammatory response. This study suggests the adenosine-A2B receptor-IL6 axis as a potential therapeutic target to mitigate inflammation and improve cardiomyocytes salvage in MI.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.