{"title":"Characterization of a Na<sup>+</sup>-stimulated acidic hyaluronate lyase from Microbulbifer sp. ALW1 and the antioxidant activity of its hydrolysates.","authors":"Qianli Huang, Chunhua Zhu, Tao Hong, Hebin Li, Lijun Li, Mingjing Zheng, Zhipeng Li, Zedong Jiang, Hui Ni, Yanbing Zhu","doi":"10.1007/s11274-025-04315-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid (HA) is a natural polymer that can be degraded by hyaluronate lyase into oligomers with diverse biological activities. In this study, a novel hyaluronate lyase (named HCLase6) of polysaccharide lyase family 6 from Microbulbifer sp. ALW1 was cloned and characterized. Optimal temperature and pH for HCLase6 was determined to be 40 ℃ and 5.0, respectively. It displayed good stability at temperature up to 45 ℃ and in the pH range of 4.0-9.0. In addition, HCLase6 demonstrated good tolerance to detergents of Tween 20, Tween 80 and SDS, and was halophilic and halotolerant to Na<sup>+</sup>. Molecular dynamics simulations indicated that the presence of Na<sup>+</sup> increased the flexibility of the loop region adjacent to the active pocket of HCLase6, altered the surface hydrophobicity and electrostatic potential, and strengthened the motion correlation between amino acid residues. Notably, the enzymatic products of HA oligosaccharides (O-HA) produced by HCLase6 showed significantly enhanced free radical scavenging activities and iron reducing power. They also exhibited the antioxidant activity in human keratinocytes cells after exposure to PM SRM 1648a. This study provides the knowledge of the enzymatic properties of HCLase6 and a reference for its industrial application.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"94"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04315-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyaluronic acid (HA) is a natural polymer that can be degraded by hyaluronate lyase into oligomers with diverse biological activities. In this study, a novel hyaluronate lyase (named HCLase6) of polysaccharide lyase family 6 from Microbulbifer sp. ALW1 was cloned and characterized. Optimal temperature and pH for HCLase6 was determined to be 40 ℃ and 5.0, respectively. It displayed good stability at temperature up to 45 ℃ and in the pH range of 4.0-9.0. In addition, HCLase6 demonstrated good tolerance to detergents of Tween 20, Tween 80 and SDS, and was halophilic and halotolerant to Na+. Molecular dynamics simulations indicated that the presence of Na+ increased the flexibility of the loop region adjacent to the active pocket of HCLase6, altered the surface hydrophobicity and electrostatic potential, and strengthened the motion correlation between amino acid residues. Notably, the enzymatic products of HA oligosaccharides (O-HA) produced by HCLase6 showed significantly enhanced free radical scavenging activities and iron reducing power. They also exhibited the antioxidant activity in human keratinocytes cells after exposure to PM SRM 1648a. This study provides the knowledge of the enzymatic properties of HCLase6 and a reference for its industrial application.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.