Lu Zhang, Qiaoyue Ge, Zeyuan Sun, Rui Zhang, Xinxi Li, Xiaoli Luo, Run Tian, Yuheng Cao, Chunyan Pu, Lin Li, Dongsheng Wu, Ping Jiang, Chuan Yu, Chiara Nosarti, Chenghan Xiao, Zhenmi Liu
{"title":"Association and shared biological bases between birth weight and cortical structure.","authors":"Lu Zhang, Qiaoyue Ge, Zeyuan Sun, Rui Zhang, Xinxi Li, Xiaoli Luo, Run Tian, Yuheng Cao, Chunyan Pu, Lin Li, Dongsheng Wu, Ping Jiang, Chuan Yu, Chiara Nosarti, Chenghan Xiao, Zhenmi Liu","doi":"10.1038/s41398-025-03294-7","DOIUrl":null,"url":null,"abstract":"<p><p>Associations between birth weight and cortical structural phenotypes have been detected; however, the understanding is incomprehensive, and the potential biological bases are not well defined. Leveraging data from genome-wide association studies, we investigated the associations and the shared transcriptomic, proteomic and cellular bases of birth weight and 13 cortical structural phenotypes. Mendelian randomization analyses were performed to examine associations between birth weight and cortical structure. Downstream transcriptome-wide association study (TWAS), proteome-wide association study (PWAS) and summary-based Mendelian randomization (SMR) analyses were utilized to identify the shared cis-regulated gene expressions and proteins. Finally, cell-type expression-specific integration for complex traits (CELLECT) analyses were conducted to explore the enriched cell types. The Mendelian randomization analyses found positive associations between birth weight and global cortical folding index, intrinsic curvature index, local gyrification index, surface area and volume. Downstream transcriptomic-level TWAS and SMR identified three gene expressions both linked to birth weight and at least one cortical structural phenotype (CNNM2, RABGAP1 and CENPW). Parallel PWAS and SMR analyses at the proteomic level identified four proteins linked to both phenotypes (CNNM2, RAB7L1, RAB5B and PPA2), of which CNNM2 was replicated. CELLECT analyses revealed brain cell types enriched in birth weight, including pericytes, inhibitory GABAergic neurons and cerebrovascular cells. These findings support the importance of early life growth to cortical structure, and suggest underlying transcriptomic, proteomic and cellular bases. These results provide intriguing targets for further research into the mechanisms of cortical development.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"74"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03294-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Associations between birth weight and cortical structural phenotypes have been detected; however, the understanding is incomprehensive, and the potential biological bases are not well defined. Leveraging data from genome-wide association studies, we investigated the associations and the shared transcriptomic, proteomic and cellular bases of birth weight and 13 cortical structural phenotypes. Mendelian randomization analyses were performed to examine associations between birth weight and cortical structure. Downstream transcriptome-wide association study (TWAS), proteome-wide association study (PWAS) and summary-based Mendelian randomization (SMR) analyses were utilized to identify the shared cis-regulated gene expressions and proteins. Finally, cell-type expression-specific integration for complex traits (CELLECT) analyses were conducted to explore the enriched cell types. The Mendelian randomization analyses found positive associations between birth weight and global cortical folding index, intrinsic curvature index, local gyrification index, surface area and volume. Downstream transcriptomic-level TWAS and SMR identified three gene expressions both linked to birth weight and at least one cortical structural phenotype (CNNM2, RABGAP1 and CENPW). Parallel PWAS and SMR analyses at the proteomic level identified four proteins linked to both phenotypes (CNNM2, RAB7L1, RAB5B and PPA2), of which CNNM2 was replicated. CELLECT analyses revealed brain cell types enriched in birth weight, including pericytes, inhibitory GABAergic neurons and cerebrovascular cells. These findings support the importance of early life growth to cortical structure, and suggest underlying transcriptomic, proteomic and cellular bases. These results provide intriguing targets for further research into the mechanisms of cortical development.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.