Skyler G Jennings, Jessica Chen, Nathan Johansen, Shawn S Goodman
{"title":"Evidence for the Auditory Nerve Generating Envelope Following Responses When Measured from Eardrum Electrodes.","authors":"Skyler G Jennings, Jessica Chen, Nathan Johansen, Shawn S Goodman","doi":"10.1007/s10162-025-00979-0","DOIUrl":null,"url":null,"abstract":"<p><p>Steady-state auditory evoked potentials are useful for studying the human auditory system and diagnosing hearing disorders. Identifying the generators of these potentials is essential for interpretation of data and for determining appropriate clinical and research applications. Here we infer putative generators of a steady-state potential measured from an electrode on the eardrum and compare this potential with the traditional envelope following response (EFR) measured from an electrode on the high forehead (N = 18, 10 female). We hypothesized that responses from the eardrum electrode would be consistent with an auditory nerve (AN) compound action potential (CAP) evoked by each cycle of the stimulus envelope, resulting in a potential we call CAP<sub>ENV</sub>. Steady-state potentials were evoked by a 90 dB peSPL, 3000-Hz puretone carrier whose envelope was modulated by a tone sweep with frequencies from 20 to 160 Hz or 80 to 640 Hz. We calculated group delay to infer potential generators. We also compared the empirically measured CAP<sub>ENV</sub> with simulated CAP<sub>ENV</sub> from a humanized model of AN responses. Response latencies and model simulations support the interpretation that CAP<sub>ENV</sub> is generated by the AN rather than hair cell or brainstem generators for all modulation frequencies tested. Conversely, latencies for the traditional EFR were consistent with a shift from cortical to brainstem generators as the modulation frequency increased from 20 to 200 Hz. We propose that CAP<sub>ENV</sub> may be a fruitful tool for assessing AN function in humans with suspected AN fiber loss and/or temporal coding disorders.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-025-00979-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Steady-state auditory evoked potentials are useful for studying the human auditory system and diagnosing hearing disorders. Identifying the generators of these potentials is essential for interpretation of data and for determining appropriate clinical and research applications. Here we infer putative generators of a steady-state potential measured from an electrode on the eardrum and compare this potential with the traditional envelope following response (EFR) measured from an electrode on the high forehead (N = 18, 10 female). We hypothesized that responses from the eardrum electrode would be consistent with an auditory nerve (AN) compound action potential (CAP) evoked by each cycle of the stimulus envelope, resulting in a potential we call CAPENV. Steady-state potentials were evoked by a 90 dB peSPL, 3000-Hz puretone carrier whose envelope was modulated by a tone sweep with frequencies from 20 to 160 Hz or 80 to 640 Hz. We calculated group delay to infer potential generators. We also compared the empirically measured CAPENV with simulated CAPENV from a humanized model of AN responses. Response latencies and model simulations support the interpretation that CAPENV is generated by the AN rather than hair cell or brainstem generators for all modulation frequencies tested. Conversely, latencies for the traditional EFR were consistent with a shift from cortical to brainstem generators as the modulation frequency increased from 20 to 200 Hz. We propose that CAPENV may be a fruitful tool for assessing AN function in humans with suspected AN fiber loss and/or temporal coding disorders.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.