{"title":"The effect of gypsum on reaction kinetics and microstructure of alkali-activated CaO‐FeOx‐SiO2 slag","authors":"Vitalii Ponomar , Sima Kamali , Tero Luukkonen , Ailar Hajimohammadi , Katja Kilpimaa","doi":"10.1016/j.cemconcomp.2025.106033","DOIUrl":null,"url":null,"abstract":"<div><div>Gypsum is commonly used in conventional cement systems to regulate setting time and enhance early strength. However, its role in alkali-activated materials (AAMs) is less well understood due to the distinct chemistry of precursors and reaction products. This study investigates the impact of synthetic and industrial gypsum on the reaction kinetics and microstructure of CaO-FeO<sub>X</sub>-SiO<sub>2</sub> slag activated with sodium silicate and sodium hydroxide, supported by dissolution-precipitation tests. Results demonstrate that gypsum addition to sodium silicate solution promotes the precipitation of C-S-H gel, which evolves into two distinct compositional varieties in the paste environment with slag, influencing the reaction kinetics. The early formation of Ca-rich gel accelerates the setting time but initially reduces the strength. The delayed formation of main Si-rich gel matrix leads to strength gain over time, with the 1 % industrial gypsum sample achieving 90 MPa at 28 days. In NaOH solutions, gypsum induces portlandite precipitation but the formation of a rod-like thaumasite phase (CaSiO<sub>3</sub>·CaCO<sub>3</sub>·CaSO<sub>4</sub>·15H<sub>2</sub>O) in the slag paste environment. The early formation of sulphate phases improves early mechanical performance but compromises durability due to the expansive nature of thaumasite growth. These findings underscore the dual role of gypsum in controlling setting time and strength in AAMs and highlight the need to optimize gypsum type and content to address challenges posed by precursor chemistry.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106033"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001155","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gypsum is commonly used in conventional cement systems to regulate setting time and enhance early strength. However, its role in alkali-activated materials (AAMs) is less well understood due to the distinct chemistry of precursors and reaction products. This study investigates the impact of synthetic and industrial gypsum on the reaction kinetics and microstructure of CaO-FeOX-SiO2 slag activated with sodium silicate and sodium hydroxide, supported by dissolution-precipitation tests. Results demonstrate that gypsum addition to sodium silicate solution promotes the precipitation of C-S-H gel, which evolves into two distinct compositional varieties in the paste environment with slag, influencing the reaction kinetics. The early formation of Ca-rich gel accelerates the setting time but initially reduces the strength. The delayed formation of main Si-rich gel matrix leads to strength gain over time, with the 1 % industrial gypsum sample achieving 90 MPa at 28 days. In NaOH solutions, gypsum induces portlandite precipitation but the formation of a rod-like thaumasite phase (CaSiO3·CaCO3·CaSO4·15H2O) in the slag paste environment. The early formation of sulphate phases improves early mechanical performance but compromises durability due to the expansive nature of thaumasite growth. These findings underscore the dual role of gypsum in controlling setting time and strength in AAMs and highlight the need to optimize gypsum type and content to address challenges posed by precursor chemistry.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.