Enantioselective C–H annulations enabled by either nickel- or cobalt-electrocatalysed C–H activation for catalyst-controlled chemodivergence

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2025-03-07 DOI:10.1038/s41929-025-01306-9
Tristan von Münchow, Neeraj Kumar Pandit, Suman Dana, Philipp Boos, Sven Erik Peters, Josselin Boucat, Yi-Ru Liu, Alexej Scheremetjew, Lutz Ackermann
{"title":"Enantioselective C–H annulations enabled by either nickel- or cobalt-electrocatalysed C–H activation for catalyst-controlled chemodivergence","authors":"Tristan von Münchow, Neeraj Kumar Pandit, Suman Dana, Philipp Boos, Sven Erik Peters, Josselin Boucat, Yi-Ru Liu, Alexej Scheremetjew, Lutz Ackermann","doi":"10.1038/s41929-025-01306-9","DOIUrl":null,"url":null,"abstract":"<p>Enantioselective electrocatalysis shows unique potential for the sustainable assembly of enantiomerically enriched molecules. This approach allows electro-oxidative C–H activation to be performed paired to the hydrogen evolution reaction. Recent progress has featured scarce transition metals with limited availability. Here we reveal that the earth-abundant 3<i>d</i> transition metals nickel and cobalt exhibit distinctive performance for enantioselective electrocatalysis with chemodivergent reactivity patterns. Enantioselective desymmetrizations of strained bicyclic alkenes were achieved through C–H annulations. A data-driven optimization of chiral <i>N</i>,<i>O</i>-bidentate salicyloxazoline-type ligands was crucial for enhancing enantioselectivity in nickel electrocatalysis. Notably, in the transition state of the enantio-determining step, secondary weak attractive <i>π</i>–<i>π</i> and CH–<i>π</i> interactions were identified, reflecting the informed adaptations in the ligand design. Detailed mechanistic investigations by experimental and computational studies revealed for the nickel electrocatalysis a C–N bond-forming reductive elimination from nickel(III) and for the cobalt electrocatalysis a C–C bond-forming nucleophilic addition from cobalt(III) as the product-determining steps.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"18 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01306-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enantioselective electrocatalysis shows unique potential for the sustainable assembly of enantiomerically enriched molecules. This approach allows electro-oxidative C–H activation to be performed paired to the hydrogen evolution reaction. Recent progress has featured scarce transition metals with limited availability. Here we reveal that the earth-abundant 3d transition metals nickel and cobalt exhibit distinctive performance for enantioselective electrocatalysis with chemodivergent reactivity patterns. Enantioselective desymmetrizations of strained bicyclic alkenes were achieved through C–H annulations. A data-driven optimization of chiral N,O-bidentate salicyloxazoline-type ligands was crucial for enhancing enantioselectivity in nickel electrocatalysis. Notably, in the transition state of the enantio-determining step, secondary weak attractive ππ and CH–π interactions were identified, reflecting the informed adaptations in the ligand design. Detailed mechanistic investigations by experimental and computational studies revealed for the nickel electrocatalysis a C–N bond-forming reductive elimination from nickel(III) and for the cobalt electrocatalysis a C–C bond-forming nucleophilic addition from cobalt(III) as the product-determining steps.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对映体选择性电催化技术在可持续组装对映体丰富的分子方面具有独特的潜力。这种方法可使电氧化 C-H 活化与氢进化反应配对进行。最近的研究进展以稀缺的过渡金属为特色。在这里,我们发现地球上丰富的 3d 过渡金属镍和钴在对映体选择性电催化方面表现出与众不同的性能,并具有化学变异反应模式。通过 C-H 环化实现了受约束双环烯的对映体选择性去对称化。数据驱动的手性 N,O-硫代水杨酰唑啉型配体的优化对于提高镍电催化的对映选择性至关重要。值得注意的是,在对映体决定步骤的过渡态中,发现了次级弱吸引力π-π和CH-π相互作用,这反映了配体设计中的知情调整。通过实验和计算研究进行的详细机理调查显示,镍电催化的产物决定步骤是镍(III)的 C-N 键形成的还原消除,而钴电催化的产物决定步骤是钴(III)的 C-C 键形成的亲核加成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Enantioselective C–H annulations enabled by either nickel- or cobalt-electrocatalysed C–H activation for catalyst-controlled chemodivergence Electrified synthesis of n-propanol using a dilute alloy catalyst Under pressure Neither H2 nor O2 in hydrogenative oxidations with water The good samarium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1