Zhiwei Huang, Uzay Emir, André Döring, Antoine Klauser, Ying Xiao, Mark Widmaier, Lijing Xin
{"title":"Rosette Spectroscopic Imaging for Whole-Brain Slab Metabolite Mapping at 7T: Acceleration Potential and Reproducibility","authors":"Zhiwei Huang, Uzay Emir, André Döring, Antoine Klauser, Ying Xiao, Mark Widmaier, Lijing Xin","doi":"10.1002/hbm.70176","DOIUrl":null,"url":null,"abstract":"<p>Whole-brain proton magnetic resonance spectroscopic imaging (<sup>1</sup>H-MRSI) is a non-invasive technique for assessing neurochemical distribution in the brain, offering valuable insights into brain functions and neural diseases. It greatly benefits from the improved SNR at ultrahigh field strengths (≥ 7T). However, <sup>1</sup>H-MRSI still faces several challenges, such as long acquisition time and severe signal contamination from water and lipids. In this study, 2D and 3D short TR/TE <sup>1</sup>H-FID-MRSI sequences using rosette trajectories were developed with nominal spatial resolutions of 4.48 × 4.48 mm<sup>2</sup> and 4.48 × 4.48 × 4.50 mm<sup>3</sup>, respectively. Water signals were suppressed using an optimized Five-variable-Angle-gaussian-pulses-with-ShorT-total-duration (FAST) water suppression scheme of 76 ms, and lipid signals were removed using the L<sub>2</sub> regularization method. Metabolic maps of major <sup>1</sup>H metabolites were obtained in 5:40 min with 16 averages and 1 average for the 2D and 3D acquisitions, respectively. Excellent intra-session reproducibility was shown, with the coefficients of variance (CV) being lower than 6% for N-Acetyl-L-aspartic acid (NAA), Glutamate (Glu), total Choline (tCho), Creatine and Phosphocreatine (tCr), and Glycine and Myo-inositol (Gly + Ins). To explore the potential of further acceleration, compressed sensing was applied retrospectively to the 3D datasets. The structural similarity index (SSIM) remained above 0.85 and 0.8 until <i>R</i> = 2 and 3 for the metabolite maps of Glu, NAA, tCr, and tCho, indicating the possibility for further reduction of acquisition time to around 2 min.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70176","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-brain proton magnetic resonance spectroscopic imaging (1H-MRSI) is a non-invasive technique for assessing neurochemical distribution in the brain, offering valuable insights into brain functions and neural diseases. It greatly benefits from the improved SNR at ultrahigh field strengths (≥ 7T). However, 1H-MRSI still faces several challenges, such as long acquisition time and severe signal contamination from water and lipids. In this study, 2D and 3D short TR/TE 1H-FID-MRSI sequences using rosette trajectories were developed with nominal spatial resolutions of 4.48 × 4.48 mm2 and 4.48 × 4.48 × 4.50 mm3, respectively. Water signals were suppressed using an optimized Five-variable-Angle-gaussian-pulses-with-ShorT-total-duration (FAST) water suppression scheme of 76 ms, and lipid signals were removed using the L2 regularization method. Metabolic maps of major 1H metabolites were obtained in 5:40 min with 16 averages and 1 average for the 2D and 3D acquisitions, respectively. Excellent intra-session reproducibility was shown, with the coefficients of variance (CV) being lower than 6% for N-Acetyl-L-aspartic acid (NAA), Glutamate (Glu), total Choline (tCho), Creatine and Phosphocreatine (tCr), and Glycine and Myo-inositol (Gly + Ins). To explore the potential of further acceleration, compressed sensing was applied retrospectively to the 3D datasets. The structural similarity index (SSIM) remained above 0.85 and 0.8 until R = 2 and 3 for the metabolite maps of Glu, NAA, tCr, and tCho, indicating the possibility for further reduction of acquisition time to around 2 min.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.