Nanocomposites from Au-Doped Vinylogous Urethane Vitrimers Based on Different Block Copolymers and Their Recyclability in Combination with Plasmonic Heating.
Patrick Schütz, Siraphat Weerathaworn, Clas Jürgensen, Birgit Hankiewicz, Volker Abetz
{"title":"Nanocomposites from Au-Doped Vinylogous Urethane Vitrimers Based on Different Block Copolymers and Their Recyclability in Combination with Plasmonic Heating.","authors":"Patrick Schütz, Siraphat Weerathaworn, Clas Jürgensen, Birgit Hankiewicz, Volker Abetz","doi":"10.1002/marc.202401027","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of gold nanoparticles (Au-NPs) and block copolymer (BCP)-based vinylogous urethane vitrimers leads to advanced nanocomposites where the thermal, mechanical, and thermo-mechanical properties are enhanced without interfering with the formation of vinylogous urethane groups and the transamination in the dynamic polymer network. Photoiniferter reversible addition-fragmentation chain transfer polymerization (photoRAFT) and inverse Turkevich synthesis are used in this work to fabricate the desired BCPs and spherical Au-NPs. The key feature of this synthesis is the integration of Au-NPs into the polymer matrix as fixed parts of the hybrid network, ensuring full recyclability. A wide range of properties can be tuned by variations of gold content, monomers, and BCP architecture. After ligand exchange, network formation, and reprocessing through heat compression, the unique optical properties of Au-NPs are retained, allowing plasmonic heating to trigger the transamination exchange reaction within the materials. As a result, the Au-doped vitrimers can self-heal and exhibit shape-memory shortly after exposure to not only heat but also light. This incorporation of Au-NPs into vitrimers could provide a versatile platform for the development of hybrid materials offering potential applications in coatings, sensors, electronic devices, etc.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401027"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of gold nanoparticles (Au-NPs) and block copolymer (BCP)-based vinylogous urethane vitrimers leads to advanced nanocomposites where the thermal, mechanical, and thermo-mechanical properties are enhanced without interfering with the formation of vinylogous urethane groups and the transamination in the dynamic polymer network. Photoiniferter reversible addition-fragmentation chain transfer polymerization (photoRAFT) and inverse Turkevich synthesis are used in this work to fabricate the desired BCPs and spherical Au-NPs. The key feature of this synthesis is the integration of Au-NPs into the polymer matrix as fixed parts of the hybrid network, ensuring full recyclability. A wide range of properties can be tuned by variations of gold content, monomers, and BCP architecture. After ligand exchange, network formation, and reprocessing through heat compression, the unique optical properties of Au-NPs are retained, allowing plasmonic heating to trigger the transamination exchange reaction within the materials. As a result, the Au-doped vitrimers can self-heal and exhibit shape-memory shortly after exposure to not only heat but also light. This incorporation of Au-NPs into vitrimers could provide a versatile platform for the development of hybrid materials offering potential applications in coatings, sensors, electronic devices, etc.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.