Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline N-oxides from the aerial parts of Leptopyrum fumarioides as potential COX-2 inhibitors: in vitro and in silico studies.
Tserendorj Solongo, Tran Thu Huong, Erdenetsogt Purevdorj, Amgalan Solongo, Battsagaan Bayasgalan, Vu Thanh Loc, Nguyen Xuan Ha, Vu Thi Ha, Nguyen Phi Hung, Do Thi Thao, Nguyen Thi Nga, Hai Pham- The, Pauline Stark, Nguyen Manh Cuong
{"title":"Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline N-oxides from the aerial parts of Leptopyrum fumarioides as potential COX-2 inhibitors: in vitro and in silico studies.","authors":"Tserendorj Solongo, Tran Thu Huong, Erdenetsogt Purevdorj, Amgalan Solongo, Battsagaan Bayasgalan, Vu Thanh Loc, Nguyen Xuan Ha, Vu Thi Ha, Nguyen Phi Hung, Do Thi Thao, Nguyen Thi Nga, Hai Pham- The, Pauline Stark, Nguyen Manh Cuong","doi":"10.1007/s11418-025-01882-x","DOIUrl":null,"url":null,"abstract":"<p><p>Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline N-oxides, were isolated from the aerial parts of Leptopyrum fumarioides (L.) Reichenb. collected in Tuv province, Mongolia. Their chemical structures, absolute configurations, and conformations were established by 2D-NMR and CD spectral analyses. Leptomonine A (1) can suppress TNF-α production and COX-2 expression in LPS-stimulated RAW 267.4 cells. This compound at a concentration of 100 µM significantly reduced the TNF-α and COX-2 levels by 36.43% and 47.10%, respectively, compared with the negative control. Moreover, leptomonine B (2) remarkably lowers COX-2 levels at the highest concentration. The docking simulations were conducted with the COX-2 enzyme and revealed the binding ability of leptomonine A (1) and leptomonine B (2) with binding energies of - 9.03 and - 8.96 kcal/mol, respectively. The interactions of these alkaloids with the targets were mainly with the hydrophobic and hydrophilic sites, which are quite similar to rofecoxib. Phytochemical investigation revealed the diversity and novelty of the natural isoquinoline alkaloids in Leptopyrum fumarioides. Two new benzyltetrahydroisoquinoline N-oxides were identified as the bioactive constituents of Leptopyrum fumarioides by assessing its anti-inflammatory effects. The findings provide scientific justification to support the traditional application of Leptopyrum fumarioides for treating liver diseases associated with inflammation.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11418-025-01882-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline N-oxides, were isolated from the aerial parts of Leptopyrum fumarioides (L.) Reichenb. collected in Tuv province, Mongolia. Their chemical structures, absolute configurations, and conformations were established by 2D-NMR and CD spectral analyses. Leptomonine A (1) can suppress TNF-α production and COX-2 expression in LPS-stimulated RAW 267.4 cells. This compound at a concentration of 100 µM significantly reduced the TNF-α and COX-2 levels by 36.43% and 47.10%, respectively, compared with the negative control. Moreover, leptomonine B (2) remarkably lowers COX-2 levels at the highest concentration. The docking simulations were conducted with the COX-2 enzyme and revealed the binding ability of leptomonine A (1) and leptomonine B (2) with binding energies of - 9.03 and - 8.96 kcal/mol, respectively. The interactions of these alkaloids with the targets were mainly with the hydrophobic and hydrophilic sites, which are quite similar to rofecoxib. Phytochemical investigation revealed the diversity and novelty of the natural isoquinoline alkaloids in Leptopyrum fumarioides. Two new benzyltetrahydroisoquinoline N-oxides were identified as the bioactive constituents of Leptopyrum fumarioides by assessing its anti-inflammatory effects. The findings provide scientific justification to support the traditional application of Leptopyrum fumarioides for treating liver diseases associated with inflammation.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.