Ting-Ting Liu, Zhi Zhang, Jing Deng, Chang-Yu Shi, Shuai Zheng, Li-Xin Jia, Jie Du, Chunmei Piao
{"title":"CXCL16 knockout inhibit asthma airway inflammation by suppressing H2-DM molecular mediated antigen presentation.","authors":"Ting-Ting Liu, Zhi Zhang, Jing Deng, Chang-Yu Shi, Shuai Zheng, Li-Xin Jia, Jie Du, Chunmei Piao","doi":"10.1038/s41420-025-02371-6","DOIUrl":null,"url":null,"abstract":"<p><p>The inflammatory microenvironment influences dendritic cell-mediated antigen presentation to regulate asthma Th2 inflammation. The scavenger receptor is expressed on DCs and regulates antigen presentation and T priming. However, whether the transmembrane scavenger receptor (SR-PSOX/CXCL16) regulates the phenotype and antigen presentation function of DCs remains unclear. We found that CXCL16 is mainly expressed on DCs in the lung tissues of asthma patients and asthma mice. CXCL16 knockout led to the suppression of airway inflammation, mucus overproduction, and airway hyperresponsiveness in Aspergillus-induced asthma. In addition, the adoptive transfer of Aspergillus-pulsed DCs shows the CXCL16<sup>+</sup> DCs exerted a promoting role in airway inflammation, the CXCL16<sup>-</sup> DCs inhibit airway inflammation. Additionally, RNA sequencing and flow cytometry data revealed that CXCL16 knockout inhibits airway inflammation by suppressing the antigen processing and presentation function of DCs, which was mediated by MHC II chaperone H2-DM. Furthermore, we found CXCL16 knockout suppressed dendritic cells differentiated forward to cDC2b subtype which is mainly charged with antigen presentation to T cell. In conclusion, we found that CXCL16 downregulated the capacity of DC antigen processing and presentation to suppress airway inflammation by reducing H2-DM expression which mediated DC differentiation. The study suggested that inhibition of CXCL16 can be a potential therapy for asthma.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"90"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02371-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory microenvironment influences dendritic cell-mediated antigen presentation to regulate asthma Th2 inflammation. The scavenger receptor is expressed on DCs and regulates antigen presentation and T priming. However, whether the transmembrane scavenger receptor (SR-PSOX/CXCL16) regulates the phenotype and antigen presentation function of DCs remains unclear. We found that CXCL16 is mainly expressed on DCs in the lung tissues of asthma patients and asthma mice. CXCL16 knockout led to the suppression of airway inflammation, mucus overproduction, and airway hyperresponsiveness in Aspergillus-induced asthma. In addition, the adoptive transfer of Aspergillus-pulsed DCs shows the CXCL16+ DCs exerted a promoting role in airway inflammation, the CXCL16- DCs inhibit airway inflammation. Additionally, RNA sequencing and flow cytometry data revealed that CXCL16 knockout inhibits airway inflammation by suppressing the antigen processing and presentation function of DCs, which was mediated by MHC II chaperone H2-DM. Furthermore, we found CXCL16 knockout suppressed dendritic cells differentiated forward to cDC2b subtype which is mainly charged with antigen presentation to T cell. In conclusion, we found that CXCL16 downregulated the capacity of DC antigen processing and presentation to suppress airway inflammation by reducing H2-DM expression which mediated DC differentiation. The study suggested that inhibition of CXCL16 can be a potential therapy for asthma.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.