{"title":"Astrocyte-secreted factors modulate synaptic protein synthesis as revealed by puromycin labeling of isolated synaptosomes.","authors":"Aida de la Cruz-Gambra, Jimena Baleriola","doi":"10.3389/fnmol.2025.1427036","DOIUrl":null,"url":null,"abstract":"<p><p>The synaptic proteome can be shaped by proteins transported from the neuronal soma and/or by mRNAs that are delivered to synapses where proteins are locally synthesized. This last mechanism is known as local translation. Local translation has been extensively studied in neurons in physiological conditions and, more recently, in neurological disorders, in which local transcriptomes and translatomes become dysregulated. It is widely believed that in neurons, the main source of localized transcripts is the neuronal soma and that localized translation is primarily regulated by the neuron itself. However, we wondered whether glial cells, especially astrocytes, could contribute to the modulation of synaptic local protein synthesis. To address this question, we compared levels of proteins produced in synaptic compartments in neuronal and neuron-astrocyte co-cultures using modified Boyden chambers or astrocyte-conditioned medium. We developed a methodology to measure local protein synthesis by puromycin labeling of isolated synaptosomes devoid of somatic input. Our results show that synaptic local translation is enhanced or retained when neurons are cultured in the presence of astrocytes and in response to astrocyte-conditioned medium. Puromycin labeling coupled with proximity ligation identified Rpl26 as one of the proteins whose local synthesis is regulated by astrocyte-secreted factors. Our results thus unravel the contribution of glia to synaptic protein synthesis and point to a previously unexplored extra layer of complexity in the regulation of local translation in neurons.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1427036"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1427036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The synaptic proteome can be shaped by proteins transported from the neuronal soma and/or by mRNAs that are delivered to synapses where proteins are locally synthesized. This last mechanism is known as local translation. Local translation has been extensively studied in neurons in physiological conditions and, more recently, in neurological disorders, in which local transcriptomes and translatomes become dysregulated. It is widely believed that in neurons, the main source of localized transcripts is the neuronal soma and that localized translation is primarily regulated by the neuron itself. However, we wondered whether glial cells, especially astrocytes, could contribute to the modulation of synaptic local protein synthesis. To address this question, we compared levels of proteins produced in synaptic compartments in neuronal and neuron-astrocyte co-cultures using modified Boyden chambers or astrocyte-conditioned medium. We developed a methodology to measure local protein synthesis by puromycin labeling of isolated synaptosomes devoid of somatic input. Our results show that synaptic local translation is enhanced or retained when neurons are cultured in the presence of astrocytes and in response to astrocyte-conditioned medium. Puromycin labeling coupled with proximity ligation identified Rpl26 as one of the proteins whose local synthesis is regulated by astrocyte-secreted factors. Our results thus unravel the contribution of glia to synaptic protein synthesis and point to a previously unexplored extra layer of complexity in the regulation of local translation in neurons.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.