GABA and GLP-1 receptor agonist combination therapy modifies diabetes and Langerhans islet cytoarchitecture in a rat model of Wolfram syndrome.

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Diabetology & Metabolic Syndrome Pub Date : 2025-03-06 DOI:10.1186/s13098-025-01651-6
Toomas Jagomäe, Sandra Velling, Tessa Britt Tikva, Varvara Maksimtšuk, Nayana Gaur, Riin Reimets, Allen Kaasik, Eero Vasar, Mario Plaas
{"title":"GABA and GLP-1 receptor agonist combination therapy modifies diabetes and Langerhans islet cytoarchitecture in a rat model of Wolfram syndrome.","authors":"Toomas Jagomäe, Sandra Velling, Tessa Britt Tikva, Varvara Maksimtšuk, Nayana Gaur, Riin Reimets, Allen Kaasik, Eero Vasar, Mario Plaas","doi":"10.1186/s13098-025-01651-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Wolfram syndrome (WS) is a rare autosomal disorder caused by WFS1 gene mutations, currently lacking approved treatments. Preclinical and clinical reports suggest that diabetes medications, such as glucagon-like peptide-1 receptor agonist (GLP1-RA), slow WS-related diabetes and neurodegeneration, improving patient outcomes. Gamma-aminobutyric acid (GABA) has crucial role in pancreatic islet function and blood glucose regulation. However, its specific role in WS diabetic pathophysiology has never been explored. The aim of this study was to enhance the therapeutic efficacy of liraglutide in mitigating the progression of diabetes associated with WS through supplementation with GABA.</p><p><strong>Methods: </strong>In this study, 5-month-old glucose intolerant WS rats and their wild-type littermates where daily treated with GABA (1 g/kg/day), liraglutide (0.4 mg/kg/day), or a combination of both. During the four-month experimental period, the diabetic phenotype was closely monitored using intraperitoneal glucose tolerance tests (IPGTT) and corresponding hormone measurements via enzyme-linked immunoassay. Following the treatments, immunohistochemical staining was performed to examine the morphology, cellular distribution, and health of Langerhans islets.</p><p><strong>Results: </strong>Unlike in conventional diabetes models, GABA monotherapy alone had no significant effect on the diabetic phenotype in WS rats. In contrast, liraglutide monotherapy effectively delayed diabetes progression. Remarkably, the combined therapy of GABA and liraglutide reversed the diabetic phenotype, significantly enhancing glucose homeostasis, as well as insulin and C-peptide secretion. The combined treatment also increased β-cell mass and corrected the pancreatic Langerhans intra-islet ratio of α-, β-, and δ-cells. As a result, the overall morphology and cytoarchitecture of the pancreatic islets were fully restored, suggesting a potential role for these agents in preserving islet integrity. Additionally, both liraglutide and combination therapy increased the number of GAD (glutamic acid decarboxylase) 65/67-positive β-cells in WS rats, indicating an improvement in general β-cell health.</p><p><strong>Conclusion: </strong>GABA monotherapy had no significant effect on the diabetic phenotype in WS rats, while liraglutide monotherapy effectively delayed diabetes progression. However, the combination therapy of GABA and liraglutide demonstrated a markedly superior effect, not only reversing the diabetic phenotype but also significantly enhancing glucose homeostasis, insulin and C-peptide secretion, and β-cell mass. This combined treatment led to a restoration of Langerhans islet architecture, correction of the endocrine cell proportions, and a notable increase in GAD65/67-positive β-cells, indicating improved β-cell health and function. These findings provide strong evidence supporting the evaluation of GABA and GLP-1 RAs as a combination therapy in clinical trials. Their synergistic effects may offer enhanced β-cell protection, promote functional recovery, and uncover novel therapeutic pathways for treating patients with WS.</p>","PeriodicalId":11106,"journal":{"name":"Diabetology & Metabolic Syndrome","volume":"17 1","pages":"82"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetology & Metabolic Syndrome","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13098-025-01651-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aim: Wolfram syndrome (WS) is a rare autosomal disorder caused by WFS1 gene mutations, currently lacking approved treatments. Preclinical and clinical reports suggest that diabetes medications, such as glucagon-like peptide-1 receptor agonist (GLP1-RA), slow WS-related diabetes and neurodegeneration, improving patient outcomes. Gamma-aminobutyric acid (GABA) has crucial role in pancreatic islet function and blood glucose regulation. However, its specific role in WS diabetic pathophysiology has never been explored. The aim of this study was to enhance the therapeutic efficacy of liraglutide in mitigating the progression of diabetes associated with WS through supplementation with GABA.

Methods: In this study, 5-month-old glucose intolerant WS rats and their wild-type littermates where daily treated with GABA (1 g/kg/day), liraglutide (0.4 mg/kg/day), or a combination of both. During the four-month experimental period, the diabetic phenotype was closely monitored using intraperitoneal glucose tolerance tests (IPGTT) and corresponding hormone measurements via enzyme-linked immunoassay. Following the treatments, immunohistochemical staining was performed to examine the morphology, cellular distribution, and health of Langerhans islets.

Results: Unlike in conventional diabetes models, GABA monotherapy alone had no significant effect on the diabetic phenotype in WS rats. In contrast, liraglutide monotherapy effectively delayed diabetes progression. Remarkably, the combined therapy of GABA and liraglutide reversed the diabetic phenotype, significantly enhancing glucose homeostasis, as well as insulin and C-peptide secretion. The combined treatment also increased β-cell mass and corrected the pancreatic Langerhans intra-islet ratio of α-, β-, and δ-cells. As a result, the overall morphology and cytoarchitecture of the pancreatic islets were fully restored, suggesting a potential role for these agents in preserving islet integrity. Additionally, both liraglutide and combination therapy increased the number of GAD (glutamic acid decarboxylase) 65/67-positive β-cells in WS rats, indicating an improvement in general β-cell health.

Conclusion: GABA monotherapy had no significant effect on the diabetic phenotype in WS rats, while liraglutide monotherapy effectively delayed diabetes progression. However, the combination therapy of GABA and liraglutide demonstrated a markedly superior effect, not only reversing the diabetic phenotype but also significantly enhancing glucose homeostasis, insulin and C-peptide secretion, and β-cell mass. This combined treatment led to a restoration of Langerhans islet architecture, correction of the endocrine cell proportions, and a notable increase in GAD65/67-positive β-cells, indicating improved β-cell health and function. These findings provide strong evidence supporting the evaluation of GABA and GLP-1 RAs as a combination therapy in clinical trials. Their synergistic effects may offer enhanced β-cell protection, promote functional recovery, and uncover novel therapeutic pathways for treating patients with WS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetology & Metabolic Syndrome
Diabetology & Metabolic Syndrome ENDOCRINOLOGY & METABOLISM-
CiteScore
6.20
自引率
0.00%
发文量
170
审稿时长
7.5 months
期刊介绍: Diabetology & Metabolic Syndrome publishes articles on all aspects of the pathophysiology of diabetes and metabolic syndrome. By publishing original material exploring any area of laboratory, animal or clinical research into diabetes and metabolic syndrome, the journal offers a high-visibility forum for new insights and discussions into the issues of importance to the relevant community.
期刊最新文献
Recent advances in understanding the mechanisms by which sodium-glucose co-transporter type 2 inhibitors protect podocytes in diabetic nephropathy. GABA and GLP-1 receptor agonist combination therapy modifies diabetes and Langerhans islet cytoarchitecture in a rat model of Wolfram syndrome. Association between metabolic visceral fat score and left ventricular hypertrophy in individuals with type 2 diabetes. Association of obesity and LDL subfractions evaluated by body mass index, waist circumference, and diabetes status: the ELSA-Brasil study. The causal effect of glaucoma and diabetic retinopathy: a Mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1