Machine Learning Predicts Non-Preferred and Preferred Vertebrate Hosts of Tsetse Flies (Glossina spp.) Based on Skin Volatile Emission Profiles.

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Chemical Ecology Pub Date : 2025-03-07 DOI:10.1007/s10886-025-01582-6
Olabimpe Y Orubuloye, David P Tchouassi, Abdullahi A Yusuf, Christian W W Pirk, Daniel K Masiga, Edward Kariuki, Baldwyn Torto
{"title":"Machine Learning Predicts Non-Preferred and Preferred Vertebrate Hosts of Tsetse Flies (Glossina spp.) Based on Skin Volatile Emission Profiles.","authors":"Olabimpe Y Orubuloye, David P Tchouassi, Abdullahi A Yusuf, Christian W W Pirk, Daniel K Masiga, Edward Kariuki, Baldwyn Torto","doi":"10.1007/s10886-025-01582-6","DOIUrl":null,"url":null,"abstract":"<p><p>Tsetse fly vectors of African trypanosomosis preferentially feed on certain vertebrates largely determined by olfactory cues they emit. Previously, we established that three skin-derived ketones including 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone accounted for avoidance of zebra by tsetse flies. Here, we tested the hypothesis that these three ketones serve as biomarkers for tsetse flies to distinguish between non-preferred- and preferred-vertebrate hosts. We used coupled gas chromatography/mass spectrometry to analyze and compare the skin volatile emissions of two non-preferred- (waterbuck and zebra) and four preferred- (buffalo, donkey, horse, warthog) vertebrate hosts in two wildlife parks in Kenya. We detected a total of 96 volatile organic compounds (VOCs) in the skin emissions composed mainly of aldehydes, ketones, alcohols, phenols and alkanes, which varied with the vertebrate host. Using random forest analysis, we found a weak correlation between the three skin-odor repellent ketones and non-preferred and preferred vertebrate hosts. However, we found that the three repellent ketones plus skin background odors may be more sensitive chemical signals for tsetse flies to discriminate vertebrate hosts. These results contribute to understanding tsetse fly vertebrate host preferences in their natural habitat across geographic scales.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 2","pages":"30"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01582-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tsetse fly vectors of African trypanosomosis preferentially feed on certain vertebrates largely determined by olfactory cues they emit. Previously, we established that three skin-derived ketones including 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone accounted for avoidance of zebra by tsetse flies. Here, we tested the hypothesis that these three ketones serve as biomarkers for tsetse flies to distinguish between non-preferred- and preferred-vertebrate hosts. We used coupled gas chromatography/mass spectrometry to analyze and compare the skin volatile emissions of two non-preferred- (waterbuck and zebra) and four preferred- (buffalo, donkey, horse, warthog) vertebrate hosts in two wildlife parks in Kenya. We detected a total of 96 volatile organic compounds (VOCs) in the skin emissions composed mainly of aldehydes, ketones, alcohols, phenols and alkanes, which varied with the vertebrate host. Using random forest analysis, we found a weak correlation between the three skin-odor repellent ketones and non-preferred and preferred vertebrate hosts. However, we found that the three repellent ketones plus skin background odors may be more sensitive chemical signals for tsetse flies to discriminate vertebrate hosts. These results contribute to understanding tsetse fly vertebrate host preferences in their natural habitat across geographic scales.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
期刊最新文献
ABOV: A Novel System of Direct Headspace Skin Sampling to Study Human Body Odor. Machine Learning Predicts Non-Preferred and Preferred Vertebrate Hosts of Tsetse Flies (Glossina spp.) Based on Skin Volatile Emission Profiles. Impact of Nectar Composition and Nectar Yeasts on Volatile Emissions and Parasitoid Behavior. Antennal Responses to Volatiles Related to Host Location in the Ambrosia Beetle Platypus quercivorus (Murayama). Fungal alkaloids mediate defense against bruchid beetles in field populations of an arborescent ipomoea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1