How do the resting EEG preprocessing states affect the outcomes of postprocessing?

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-03-04 DOI:10.1016/j.neuroimage.2025.121122
Shiang Hu, Jie Ruan, Pedro Antonio Valdes-Sosa, Zhao Lv
{"title":"How do the resting EEG preprocessing states affect the outcomes of postprocessing?","authors":"Shiang Hu, Jie Ruan, Pedro Antonio Valdes-Sosa, Zhao Lv","doi":"10.1016/j.neuroimage.2025.121122","DOIUrl":null,"url":null,"abstract":"<p><p>Plenty of artifact removal tools and pipelines have been developed to correct the resting EEG waves and discover scientific values behind. Without expertised visual inspection, it is susceptible to derive improper preprocessing, resulting in either insufficient preprocessed EEG (IPE) or excessive preprocessed EEG (EPE). However, little is known about the impacts of IPE or EPE on postprocessing in the temporal, frequency, and spatial domains, particularly as to the spectra and the functional connectivity analysis. Here, the clean EEG (CE) with linear and quasi-stationary assumption was synthesized as ground truth based on the New-York head model and the multivariate autoregressive model. Later, IPE and EPE were simulated by injecting Gaussian noise and losing brain components, respectively. Spectral homogeneities of all EEGs were evaluated by the proposed Parallel LOg Spectra index (PaLOSi). Then, the impacts on postprocessing were quantified by the IPE/EPE deviation from CE as to the temporal statistics, multichannel power, cross spectra, scalp EEG network properties, and source dispersion. Lastly, the association between PaLOSi and varying trends of postprocessing outcomes was analyzed with evolutionary preprocessing states. We found that compared with CE: 1) IPE (EPE) temporal statistics deviated more greatly with more noise injected (brain activities discarded); 2) IPE (EPE) power was higher (lower), and IPE power was almost parallel to that of CE across frequencies, while EPE power deviation decreased with higher frequencies; IPE cross spectra deviated more greatly than EPE, except for β band; 3) derived from 7 coupling measures, IPE (EPE) network had lower (higher) transmission efficiency and worse (better) integration ability; 4) IPE sources distributed more dispersedly with greater strength while EPE sources activated more focally with lower amplitudes; 5) PaLOSi was consistently correlated with varying trends of investigated postprocessing for both simulated and real data. This study shed light on how the postprocessing outcomes are affected by the preprocessing states and PaLOSi is a promising quality control metric for creating normative EEG databases.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121122"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121122","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Plenty of artifact removal tools and pipelines have been developed to correct the resting EEG waves and discover scientific values behind. Without expertised visual inspection, it is susceptible to derive improper preprocessing, resulting in either insufficient preprocessed EEG (IPE) or excessive preprocessed EEG (EPE). However, little is known about the impacts of IPE or EPE on postprocessing in the temporal, frequency, and spatial domains, particularly as to the spectra and the functional connectivity analysis. Here, the clean EEG (CE) with linear and quasi-stationary assumption was synthesized as ground truth based on the New-York head model and the multivariate autoregressive model. Later, IPE and EPE were simulated by injecting Gaussian noise and losing brain components, respectively. Spectral homogeneities of all EEGs were evaluated by the proposed Parallel LOg Spectra index (PaLOSi). Then, the impacts on postprocessing were quantified by the IPE/EPE deviation from CE as to the temporal statistics, multichannel power, cross spectra, scalp EEG network properties, and source dispersion. Lastly, the association between PaLOSi and varying trends of postprocessing outcomes was analyzed with evolutionary preprocessing states. We found that compared with CE: 1) IPE (EPE) temporal statistics deviated more greatly with more noise injected (brain activities discarded); 2) IPE (EPE) power was higher (lower), and IPE power was almost parallel to that of CE across frequencies, while EPE power deviation decreased with higher frequencies; IPE cross spectra deviated more greatly than EPE, except for β band; 3) derived from 7 coupling measures, IPE (EPE) network had lower (higher) transmission efficiency and worse (better) integration ability; 4) IPE sources distributed more dispersedly with greater strength while EPE sources activated more focally with lower amplitudes; 5) PaLOSi was consistently correlated with varying trends of investigated postprocessing for both simulated and real data. This study shed light on how the postprocessing outcomes are affected by the preprocessing states and PaLOSi is a promising quality control metric for creating normative EEG databases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Positive mood enhances gender stereotype activation during semantic integration and re-analysis How do the resting EEG preprocessing states affect the outcomes of postprocessing? Self-Organizing Dynamic Research Based on Phase Coherence Graph Autoencoders: Analysis of Brain Metastable States Across the Lifespan. The analyses of structural covariance and structural covariance similarity of cortical morphological measures. Time- and Sex-Dependent Effects of Juvenile Social Isolation on Mouse Brain Morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1