Self-Organizing Dynamic Research Based on Phase Coherence Graph Autoencoders: Analysis of Brain Metastable States Across the Lifespan.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-03-04 DOI:10.1016/j.neuroimage.2025.121119
Hao Guo, Yu-Xuan Liu, Yao Li, Qi-Li Guo, Zhi-Peng Hao, Yan-Li Yang, Jing Wei
{"title":"Self-Organizing Dynamic Research Based on Phase Coherence Graph Autoencoders: Analysis of Brain Metastable States Across the Lifespan.","authors":"Hao Guo, Yu-Xuan Liu, Yao Li, Qi-Li Guo, Zhi-Peng Hao, Yan-Li Yang, Jing Wei","doi":"10.1016/j.neuroimage.2025.121119","DOIUrl":null,"url":null,"abstract":"<p><p>The development of the human brain is a complex, lifelong process during which collective behaviors of neurons exhibit self-organizing dynamics. Metastable states play a crucial role in understanding the complex dynamical mechanisms of the brain, and analyzing them helps to reveal the mechanisms of functional changes in the brain throughout development and aging. Specifically, global metastable state provides a overall perspective on the flexibility of brain reorganization, while the evolution trajectories of transient functional patterns capture detailed changes in brain activity. The leading eigenvector dynamics analysis (LEiDA) method significantly reduces the dimensionality of data and is widely used to capture the temporal trajectory characteristics of transient functional patterns, i.e., metastable brain states. However, LEiDA's linear dimensionality reduction of high-dimensional raw brain data may overlook non-linear information and lose some relationships between features. We developed a framework based on Phase Coherence Graph Autoencoder (PCGAE) that employs graph autoencoders (GAE) for non-linear dimensionality reduction of phase coherence matrices. This approach clusters to identify more distinct metastable brain states and is applied to the analysis of resting-state functional magnetic resonance imaging (rs-fMRI) data across the human lifespan. This paper investigates age-related differences and continuity changes from different perspectives: metastable state indicators and state trajectory indicators (occurrence probability, lifetime, and state transition metrics). Global metastable state shows a linear decline with age, while both linear and quadratic effects of age-related changes are observed in detailed state metastable and state trajectory indicators. Finally, the proposed feature extraction scheme demonstrates good classification performance for categorizing brain age groups. These findings can help us understand the self-organizing reorganization characteristics associated with aging and their complex dynamic changes, providing new insights into brain development throughout the entire lifespan.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121119"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The development of the human brain is a complex, lifelong process during which collective behaviors of neurons exhibit self-organizing dynamics. Metastable states play a crucial role in understanding the complex dynamical mechanisms of the brain, and analyzing them helps to reveal the mechanisms of functional changes in the brain throughout development and aging. Specifically, global metastable state provides a overall perspective on the flexibility of brain reorganization, while the evolution trajectories of transient functional patterns capture detailed changes in brain activity. The leading eigenvector dynamics analysis (LEiDA) method significantly reduces the dimensionality of data and is widely used to capture the temporal trajectory characteristics of transient functional patterns, i.e., metastable brain states. However, LEiDA's linear dimensionality reduction of high-dimensional raw brain data may overlook non-linear information and lose some relationships between features. We developed a framework based on Phase Coherence Graph Autoencoder (PCGAE) that employs graph autoencoders (GAE) for non-linear dimensionality reduction of phase coherence matrices. This approach clusters to identify more distinct metastable brain states and is applied to the analysis of resting-state functional magnetic resonance imaging (rs-fMRI) data across the human lifespan. This paper investigates age-related differences and continuity changes from different perspectives: metastable state indicators and state trajectory indicators (occurrence probability, lifetime, and state transition metrics). Global metastable state shows a linear decline with age, while both linear and quadratic effects of age-related changes are observed in detailed state metastable and state trajectory indicators. Finally, the proposed feature extraction scheme demonstrates good classification performance for categorizing brain age groups. These findings can help us understand the self-organizing reorganization characteristics associated with aging and their complex dynamic changes, providing new insights into brain development throughout the entire lifespan.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Positive mood enhances gender stereotype activation during semantic integration and re-analysis How do the resting EEG preprocessing states affect the outcomes of postprocessing? Self-Organizing Dynamic Research Based on Phase Coherence Graph Autoencoders: Analysis of Brain Metastable States Across the Lifespan. The analyses of structural covariance and structural covariance similarity of cortical morphological measures. Time- and Sex-Dependent Effects of Juvenile Social Isolation on Mouse Brain Morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1