DREDge: robust motion correction for high-density extracellular recordings across species.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2025-03-06 DOI:10.1038/s41592-025-02614-5
Charlie Windolf, Han Yu, Angelique C Paulk, Domokos Meszéna, William Muñoz, Julien Boussard, Richard Hardstone, Irene Caprara, Mohsen Jamali, Yoav Kfir, Duo Xu, Jason E Chung, Kristin K Sellers, Zhiwen Ye, Jordan Shaker, Anna Lebedeva, R T Raghavan, Eric Trautmann, Max Melin, João Couto, Samuel Garcia, Brian Coughlin, Margot Elmaleh, David Christianson, Jeremy D W Greenlee, Csaba Horváth, Richárd Fiáth, István Ulbert, Michael A Long, J Anthony Movshon, Michael N Shadlen, Mark M Churchland, Anne K Churchland, Nicholas A Steinmetz, Edward F Chang, Jeffrey S Schweitzer, Ziv M Williams, Sydney S Cash, Liam Paninski, Erdem Varol
{"title":"DREDge: robust motion correction for high-density extracellular recordings across species.","authors":"Charlie Windolf, Han Yu, Angelique C Paulk, Domokos Meszéna, William Muñoz, Julien Boussard, Richard Hardstone, Irene Caprara, Mohsen Jamali, Yoav Kfir, Duo Xu, Jason E Chung, Kristin K Sellers, Zhiwen Ye, Jordan Shaker, Anna Lebedeva, R T Raghavan, Eric Trautmann, Max Melin, João Couto, Samuel Garcia, Brian Coughlin, Margot Elmaleh, David Christianson, Jeremy D W Greenlee, Csaba Horváth, Richárd Fiáth, István Ulbert, Michael A Long, J Anthony Movshon, Michael N Shadlen, Mark M Churchland, Anne K Churchland, Nicholas A Steinmetz, Edward F Chang, Jeffrey S Schweitzer, Ziv M Williams, Sydney S Cash, Liam Paninski, Erdem Varol","doi":"10.1038/s41592-025-02614-5","DOIUrl":null,"url":null,"abstract":"<p><p>High-density microelectrode arrays have opened new possibilities for systems neuroscience, but brain motion relative to the array poses challenges for downstream analyses. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from action potential data, DREDge enables automated, high-temporal-resolution motion tracking in local field potential data. In human intraoperative recordings, DREDge's local field potential-based tracking reliably recovered evoked potentials and single-unit spike sorting. In recordings of deep probe insertions in nonhuman primates, DREDge tracked motion across centimeters of tissue and several brain regions while mapping single-unit electrophysiological features. DREDge reliably improved motion correction in acute mouse recordings, especially in those made with a recent ultrahigh-density probe. Applying DREDge to recordings from chronic implantations in mice yielded stable motion tracking despite changes in neural activity between experimental sessions. These advances enable automated, scalable registration of electrophysiological data across species, probes and drift types, providing a foundation for downstream analyses of these rich datasets.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02614-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

High-density microelectrode arrays have opened new possibilities for systems neuroscience, but brain motion relative to the array poses challenges for downstream analyses. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from action potential data, DREDge enables automated, high-temporal-resolution motion tracking in local field potential data. In human intraoperative recordings, DREDge's local field potential-based tracking reliably recovered evoked potentials and single-unit spike sorting. In recordings of deep probe insertions in nonhuman primates, DREDge tracked motion across centimeters of tissue and several brain regions while mapping single-unit electrophysiological features. DREDge reliably improved motion correction in acute mouse recordings, especially in those made with a recent ultrahigh-density probe. Applying DREDge to recordings from chronic implantations in mice yielded stable motion tracking despite changes in neural activity between experimental sessions. These advances enable automated, scalable registration of electrophysiological data across species, probes and drift types, providing a foundation for downstream analyses of these rich datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO. DREDge: robust motion correction for high-density extracellular recordings across species. Cell2fate infers RNA velocity modules to improve cell fate prediction. Entering the era of deep single-cell proteomics. Reproducible image-based profiling with Pycytominer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1