Characterization of a G. max × G. soja nested association mapping population and identification of loci controlling seed composition traits from wild soybean.
Linfeng Chen, Earl Taliercio, Zenglu Li, Rouf Mian, Thomas E Carter, He Wei, Chuck Quigely, Susan Araya, Ruifeng He, Qijian Song
{"title":"Characterization of a G. max × G. soja nested association mapping population and identification of loci controlling seed composition traits from wild soybean.","authors":"Linfeng Chen, Earl Taliercio, Zenglu Li, Rouf Mian, Thomas E Carter, He Wei, Chuck Quigely, Susan Araya, Ruifeng He, Qijian Song","doi":"10.1007/s00122-025-04848-5","DOIUrl":null,"url":null,"abstract":"<p><p>Wild soybean (Glycine soja Siebold & Zucc.) has valuable genetic diversity for improved disease resistance, stress tolerance, seed protein content and seed sulfur-containing amino acid concentrations. Many studies have reported loci controlling seed composition traits based on cultivated soybean populations, but wild soybean has been largely overlooked. In this study, a nested association mapping (NAM) population consisting of 10 families and 1107 recombinant inbred lines was developed by crossing 10 wild accessions with the common cultivar NC-Raleigh. Seed composition of the F<sub>6</sub> generation grown at two locations was phenotyped, and genetic markers were identified for each line. The average number of recombination events in the wild soybean-derived population was significantly higher than that in the cultivated soybean-derived population, which resulted in a higher resolution for QTL mapping. Segregation bias in almost all NAM families was significantly biased toward the alleles of the wild soybean parent. Through single-family linkage mapping and association analysis of the entire NAM population, new QTLs with positive allele effects were identified from wild parents, including 5, 6, 18, 9, 16, 17 and 20 for protein content, oil content, total protein and oil content, methionine content, cysteine content, lysine content and threonine content, respectively. Candidate genes associated with these traits were identified based on gene annotations and gene expression levels in different tissues. This is the first study to reveal the genetic characteristics of wild soybean-derived populations, landscapes and the extent of effects of QTLs and candidate genes controlling traits from different wild soybean parents.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"65"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04848-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Wild soybean (Glycine soja Siebold & Zucc.) has valuable genetic diversity for improved disease resistance, stress tolerance, seed protein content and seed sulfur-containing amino acid concentrations. Many studies have reported loci controlling seed composition traits based on cultivated soybean populations, but wild soybean has been largely overlooked. In this study, a nested association mapping (NAM) population consisting of 10 families and 1107 recombinant inbred lines was developed by crossing 10 wild accessions with the common cultivar NC-Raleigh. Seed composition of the F6 generation grown at two locations was phenotyped, and genetic markers were identified for each line. The average number of recombination events in the wild soybean-derived population was significantly higher than that in the cultivated soybean-derived population, which resulted in a higher resolution for QTL mapping. Segregation bias in almost all NAM families was significantly biased toward the alleles of the wild soybean parent. Through single-family linkage mapping and association analysis of the entire NAM population, new QTLs with positive allele effects were identified from wild parents, including 5, 6, 18, 9, 16, 17 and 20 for protein content, oil content, total protein and oil content, methionine content, cysteine content, lysine content and threonine content, respectively. Candidate genes associated with these traits were identified based on gene annotations and gene expression levels in different tissues. This is the first study to reveal the genetic characteristics of wild soybean-derived populations, landscapes and the extent of effects of QTLs and candidate genes controlling traits from different wild soybean parents.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.