{"title":"Post-transcriptional regulation in archaea.","authors":"Jie Li, Yueting Liang, Xiuzhu Dong","doi":"10.1016/j.tim.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>During genetic information transfer from DNA to protein, gene expression is strictly controlled at several key stages. Post-transcriptional regulation provides a plethora of mechanisms for precise and rapid control of gene expression, ensuring cellular survival and environmental adaptation. Emerging evidence shows that Archaea, the third domain of life, employ diverse post-transcriptional regulation strategies, including distinct RNA-associated proteins and small noncoding RNAs (sRNAs), to control gene expression. This review summarizes recent advances in understanding archaeal post-transcriptional regulation, focusing on processes, mechanisms, and physiological significances, and key elements including sRNAs, 5'- or 3'-untranslated regions (5'-UTRs or 3'-UTRs), RNA-binding proteins (RBPs) or chaperones, and ribonucleases, underscoring their crucial roles in optimizing archaeal gene expression for survival and environmental responsiveness.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.02.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During genetic information transfer from DNA to protein, gene expression is strictly controlled at several key stages. Post-transcriptional regulation provides a plethora of mechanisms for precise and rapid control of gene expression, ensuring cellular survival and environmental adaptation. Emerging evidence shows that Archaea, the third domain of life, employ diverse post-transcriptional regulation strategies, including distinct RNA-associated proteins and small noncoding RNAs (sRNAs), to control gene expression. This review summarizes recent advances in understanding archaeal post-transcriptional regulation, focusing on processes, mechanisms, and physiological significances, and key elements including sRNAs, 5'- or 3'-untranslated regions (5'-UTRs or 3'-UTRs), RNA-binding proteins (RBPs) or chaperones, and ribonucleases, underscoring their crucial roles in optimizing archaeal gene expression for survival and environmental responsiveness.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.