Locus-specific chromatin proteomics using dCas-guided proximity labelling in aspergillus nidulans.

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY Fungal Genetics and Biology Pub Date : 2025-03-04 DOI:10.1016/j.fgb.2025.103973
Thomas Svoboda, Dominik Niederdöckl-Loibl, Andreas Schüller, Karin Hummel, Sarah Schlosser, Ebrahim Razzazi-Fazeli, Joseph Strauss
{"title":"Locus-specific chromatin proteomics using dCas-guided proximity labelling in aspergillus nidulans.","authors":"Thomas Svoboda, Dominik Niederdöckl-Loibl, Andreas Schüller, Karin Hummel, Sarah Schlosser, Ebrahim Razzazi-Fazeli, Joseph Strauss","doi":"10.1016/j.fgb.2025.103973","DOIUrl":null,"url":null,"abstract":"<p><p>Proximity labelling that uses promiscuous biotin ligases (BirA) fused to a bait protein is a powerful tool to identify protein interaction partners in vivo under different metabolic or developmental conditions. BirA can also be used to determine protein composition and interaction partners at specific chromatin locations when it is fused with enzymatically-disabled Cas9 (dCas9) and then guided to the location of interest by sgRNAs. We adapted this method (called CasID) for fungal cells using the nitrate assimilation gene cluster of A. nidulans as a model locus and estrogen-inducible expression of the dCas9-BirA fusion to improve condition-specific labelling. For method establishment, we first verified the presence of dCas-BirA and a known transcription factor at the nitrate locus by chromatin immunoprecipitation (ChIP). Results show that both dCas-BirA and the AreA transcription factor are present at the locus of interest under the conditions used for biotinylation. We then optimized the CasID procedure for efficient labelling and background reduction using the CasID-sgRNA strain and two control strains, one lacking the sgRNA and another one lacking the whole CasID system. Here we provide proof-of-concept for the suitability of the method by showing that biotinylated proteins are enriched in the CasID strains in comparison to the controls. After background reduction, 32 proteins remained in two independent experiments exclusively enriched in the Cas-ID-sgRNA strain. Among these proteins was NmrA, an AreA-interacting regulator, and we also found several chromatin-associated proteins. Overall, our results demonstrate that CasID is suitable for locus-specific labelling and identification of chromatin-associated proteins and transcription factors in A. nidulans. However, the high background of proteins that are biotinylated out of chromatin context or unspecifically attach to the affinity purification matrix needs to be addressed by implementing a set of rigorous controls. In summary, we herewith provide a detailed protocol for application of the method that proved to be useful for the identification of novel chromatin-associated proteins and their interaction partners at a specific genomic locus in divers metabolic and developmental conditions. AUTHOR SUMMARY: This study demonstrates that locus-specific proteomics can be carried out by dCas-BirA guided proximity labelling in Aspergillus nidulans. For establishment, we targeted the well-described bidirectional promoter region between niaD, a nitrate reductase, and niiA, a nitrite reductase. At this locus we could test by chromatin immunoprecipitation (ChIP) in combination with qPCR if both, the dCas9-BirA fusion as well as a central transcription factor are at the locus under the conditions of our CasID experiment. After this first control step, we considered that unspecific labelling by dCas-BirA during the time from translation to landing at the targeted chromatin locus may be one of the most relevant drawbacks of the method. Therefore, we developed a number of control strains that would allow us to clearly discriminate between background and sgRNA-dependent specific labelling at the locus. Our protein MS results validated these estimates and only considering the results of these controls enabled us to distinguish the set of locus-specific proteins from a very high general background. Finally, enrichment of biotinylated proteins through affinity purification with streptavidin resin and subsequent LC-MS/MS analysis showed that more than 800 proteins were detected in each sample, emphasizing the high background of the purification method. After background reduction of the control samples, we were able to identify 32 proteins which were exclusively detected in the test strain in two independent measurements, including several chromatin-associated proteins and NmrA, a negative regulator of the nitrate locus transcription factor AreA.</p>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":" ","pages":"103973"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.fgb.2025.103973","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Proximity labelling that uses promiscuous biotin ligases (BirA) fused to a bait protein is a powerful tool to identify protein interaction partners in vivo under different metabolic or developmental conditions. BirA can also be used to determine protein composition and interaction partners at specific chromatin locations when it is fused with enzymatically-disabled Cas9 (dCas9) and then guided to the location of interest by sgRNAs. We adapted this method (called CasID) for fungal cells using the nitrate assimilation gene cluster of A. nidulans as a model locus and estrogen-inducible expression of the dCas9-BirA fusion to improve condition-specific labelling. For method establishment, we first verified the presence of dCas-BirA and a known transcription factor at the nitrate locus by chromatin immunoprecipitation (ChIP). Results show that both dCas-BirA and the AreA transcription factor are present at the locus of interest under the conditions used for biotinylation. We then optimized the CasID procedure for efficient labelling and background reduction using the CasID-sgRNA strain and two control strains, one lacking the sgRNA and another one lacking the whole CasID system. Here we provide proof-of-concept for the suitability of the method by showing that biotinylated proteins are enriched in the CasID strains in comparison to the controls. After background reduction, 32 proteins remained in two independent experiments exclusively enriched in the Cas-ID-sgRNA strain. Among these proteins was NmrA, an AreA-interacting regulator, and we also found several chromatin-associated proteins. Overall, our results demonstrate that CasID is suitable for locus-specific labelling and identification of chromatin-associated proteins and transcription factors in A. nidulans. However, the high background of proteins that are biotinylated out of chromatin context or unspecifically attach to the affinity purification matrix needs to be addressed by implementing a set of rigorous controls. In summary, we herewith provide a detailed protocol for application of the method that proved to be useful for the identification of novel chromatin-associated proteins and their interaction partners at a specific genomic locus in divers metabolic and developmental conditions. AUTHOR SUMMARY: This study demonstrates that locus-specific proteomics can be carried out by dCas-BirA guided proximity labelling in Aspergillus nidulans. For establishment, we targeted the well-described bidirectional promoter region between niaD, a nitrate reductase, and niiA, a nitrite reductase. At this locus we could test by chromatin immunoprecipitation (ChIP) in combination with qPCR if both, the dCas9-BirA fusion as well as a central transcription factor are at the locus under the conditions of our CasID experiment. After this first control step, we considered that unspecific labelling by dCas-BirA during the time from translation to landing at the targeted chromatin locus may be one of the most relevant drawbacks of the method. Therefore, we developed a number of control strains that would allow us to clearly discriminate between background and sgRNA-dependent specific labelling at the locus. Our protein MS results validated these estimates and only considering the results of these controls enabled us to distinguish the set of locus-specific proteins from a very high general background. Finally, enrichment of biotinylated proteins through affinity purification with streptavidin resin and subsequent LC-MS/MS analysis showed that more than 800 proteins were detected in each sample, emphasizing the high background of the purification method. After background reduction of the control samples, we were able to identify 32 proteins which were exclusively detected in the test strain in two independent measurements, including several chromatin-associated proteins and NmrA, a negative regulator of the nitrate locus transcription factor AreA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
期刊最新文献
Heterotrimeric G-gamma 1 (Gpg1) participates with G-beta 1 subunits (Gpb1) in the induction of hyphal growth and virulence via the PKA pathway in Mucor lusitanicus. Locus-specific chromatin proteomics using dCas-guided proximity labelling in aspergillus nidulans. Saccharomyces cerevisiae recovery from various mild abiotic stresses: Viability, fitness, and high resolution three-dimensional morphology imaging. Septin AoCDC11 is involved in trap morphogenesis, conidiation, and vegetative growth in carnivorous Arthrobotrys oligospora Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1