Saccharomyces cerevisiae recovery from various mild abiotic stresses: Viability, fitness, and high resolution three-dimensional morphology imaging.

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY Fungal Genetics and Biology Pub Date : 2025-03-04 DOI:10.1016/j.fgb.2025.103975
Piotr J Pietras, Monika Chaszczewska-Markowska, Daniel Ghete, Agata Tyczewska, Kamilla Bąkowska-Żywicka
{"title":"Saccharomyces cerevisiae recovery from various mild abiotic stresses: Viability, fitness, and high resolution three-dimensional morphology imaging.","authors":"Piotr J Pietras, Monika Chaszczewska-Markowska, Daniel Ghete, Agata Tyczewska, Kamilla Bąkowska-Żywicka","doi":"10.1016/j.fgb.2025.103975","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental conditions have a huge impact on the development of all living things but are especially important in the case of single-celled organisms such as Saccharomyces cerevisiae that must respond quickly and appropriately to any change. Many molecular mechanisms of response to stress have been identified in yeast, but only a few reports address physiological and morphological changes. To investigate S. cerevisiae recovery from ten mild stress conditions and to describe the viability and fitness, we performed a series of growth analysis experiments. Moreover, label-free live cell imaging of yeast subjected to ten environmental stresses has been achieved using holotomography - a leading-edge high resolution 3D quantitative phase imaging. We determined that recovery times of yeast cultures subjected to hyperosmotic and sugar starvation stresses were the shortest, as were the doubling times. Substantially lower proliferation capacity was recorded in yeast after applying sugar- and AA starvation, and high pH stresses, compared to control. Furthermore, the stationary growth was much shorter after subjecting yeast to hypoosmotic and heat stresses, and much longer after anaerobic and UV stresses. Further, we determined changes in shape, colony formation, cell wall damage, volume, sphericity, protein and lipid contents in yeast cells under stress conditions. The most prominent changes were observed for UV and hyperosmotic stresses. Condluding, stress conditions applied to yest cultures affected them differently, causing detrimental effects to their growth, metabolism, fitness and morphology. Moreover, we have proven that holotomography is excellent for precisely determining morphological changes of single cells.</p>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":" ","pages":"103975"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.fgb.2025.103975","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental conditions have a huge impact on the development of all living things but are especially important in the case of single-celled organisms such as Saccharomyces cerevisiae that must respond quickly and appropriately to any change. Many molecular mechanisms of response to stress have been identified in yeast, but only a few reports address physiological and morphological changes. To investigate S. cerevisiae recovery from ten mild stress conditions and to describe the viability and fitness, we performed a series of growth analysis experiments. Moreover, label-free live cell imaging of yeast subjected to ten environmental stresses has been achieved using holotomography - a leading-edge high resolution 3D quantitative phase imaging. We determined that recovery times of yeast cultures subjected to hyperosmotic and sugar starvation stresses were the shortest, as were the doubling times. Substantially lower proliferation capacity was recorded in yeast after applying sugar- and AA starvation, and high pH stresses, compared to control. Furthermore, the stationary growth was much shorter after subjecting yeast to hypoosmotic and heat stresses, and much longer after anaerobic and UV stresses. Further, we determined changes in shape, colony formation, cell wall damage, volume, sphericity, protein and lipid contents in yeast cells under stress conditions. The most prominent changes were observed for UV and hyperosmotic stresses. Condluding, stress conditions applied to yest cultures affected them differently, causing detrimental effects to their growth, metabolism, fitness and morphology. Moreover, we have proven that holotomography is excellent for precisely determining morphological changes of single cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
期刊最新文献
Heterotrimeric G-gamma 1 (Gpg1) participates with G-beta 1 subunits (Gpb1) in the induction of hyphal growth and virulence via the PKA pathway in Mucor lusitanicus. Locus-specific chromatin proteomics using dCas-guided proximity labelling in aspergillus nidulans. Saccharomyces cerevisiae recovery from various mild abiotic stresses: Viability, fitness, and high resolution three-dimensional morphology imaging. Septin AoCDC11 is involved in trap morphogenesis, conidiation, and vegetative growth in carnivorous Arthrobotrys oligospora Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1