Prediction of preoperative tumor-related epilepsy using XGBoost radiomics models with 4 MRI sequences.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-03-19 DOI:10.1088/2057-1976/adbdd3
Reuben George, Li Sze Chow, Kheng Seang Lim, Norlisah Ramli, Li Kuo Tan, Mahmud Iwan Solihin
{"title":"Prediction of preoperative tumor-related epilepsy using XGBoost radiomics models with 4 MRI sequences.","authors":"Reuben George, Li Sze Chow, Kheng Seang Lim, Norlisah Ramli, Li Kuo Tan, Mahmud Iwan Solihin","doi":"10.1088/2057-1976/adbdd3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Introduction</i>. Tumor-related epilepsy is a prevalent condition in patients with gliomas. Accurate prediction of epilepsy is crucial for early treatment. This study aimed to evaluate the novel application of the eXtreme Gradient Boost (XGBoost) machine learning (ML) algorithm into a radiomics model predicting preoperative tumor-related epilepsy (PTRE). Its performance was compared with 4 conventional ML algorithms, including the least absolute shrinkage and selection operator (LASSO), elastic net, random forest, and support vector machine.<i>Methods.</i>This study used four magnetic resonance imaging (MRI) images consisting of four sequences (T1-weighted [T1W], T1-weighted contrast [T1WC], T2-weighted [T2W], and T2-weighted fluid-attenuated inversion recovery [T2W FLAIR]) acquired from 74 glioma patients, 30 with PTRE and 44 without PTRE. 394 radiomics features were extracted from the MRI scans using<i>Pyradiomics</i>, alongside 12 clinical features from the medical records. The ML algorithms were mixed and matched to create 20 radiomics models with two stages for: (1) feature selection and (2) prediction of PTRE. Nested cross-validation was used to tune the algorithms and select the stable features.<i>Results.</i>The XGBoost radiomics model demonstrated the second-highest balanced accuracy and F1-score of 0.81 ± 0.01 and 0.80 ± 0.01 respectively. It also achieved the highest recall of 0.81 ± 0.02. It used mostly textural radiomics features from the T1W, T2W and T2W FLAIR sequences to make the predictions.<i>Conclusion.</i>This study demonstrates that XGBoost is a viable alternative to conventional ML algorithms for developing a radiomics model to predict PTRE, as the model produced from XGBoost had among the highest metrics. XGBoost selected features with a higher predictive value than other models. The features selected by XGBoost were more stable, which is a useful property for radiomics analysis. Features selected from multiple MRI sequences were important in the model's decision.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adbdd3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. Tumor-related epilepsy is a prevalent condition in patients with gliomas. Accurate prediction of epilepsy is crucial for early treatment. This study aimed to evaluate the novel application of the eXtreme Gradient Boost (XGBoost) machine learning (ML) algorithm into a radiomics model predicting preoperative tumor-related epilepsy (PTRE). Its performance was compared with 4 conventional ML algorithms, including the least absolute shrinkage and selection operator (LASSO), elastic net, random forest, and support vector machine.Methods.This study used four magnetic resonance imaging (MRI) images consisting of four sequences (T1-weighted [T1W], T1-weighted contrast [T1WC], T2-weighted [T2W], and T2-weighted fluid-attenuated inversion recovery [T2W FLAIR]) acquired from 74 glioma patients, 30 with PTRE and 44 without PTRE. 394 radiomics features were extracted from the MRI scans usingPyradiomics, alongside 12 clinical features from the medical records. The ML algorithms were mixed and matched to create 20 radiomics models with two stages for: (1) feature selection and (2) prediction of PTRE. Nested cross-validation was used to tune the algorithms and select the stable features.Results.The XGBoost radiomics model demonstrated the second-highest balanced accuracy and F1-score of 0.81 ± 0.01 and 0.80 ± 0.01 respectively. It also achieved the highest recall of 0.81 ± 0.02. It used mostly textural radiomics features from the T1W, T2W and T2W FLAIR sequences to make the predictions.Conclusion.This study demonstrates that XGBoost is a viable alternative to conventional ML algorithms for developing a radiomics model to predict PTRE, as the model produced from XGBoost had among the highest metrics. XGBoost selected features with a higher predictive value than other models. The features selected by XGBoost were more stable, which is a useful property for radiomics analysis. Features selected from multiple MRI sequences were important in the model's decision.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
An investigation of pre-stimulus eeg for prediction of driver reaction time. A facebow-free technique for mechanical articulator remounting using computed tomography. Architectural order identification across label-free living cell imaging with a swin transformer-conditional GAN. Prediction of preoperative tumor-related epilepsy using XGBoost radiomics models with 4 MRI sequences. Fabrication of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface for Vascular Electrocorticography Using Laser Ablation Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1