Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia.

IF 3.5 2区 医学 Q1 CLINICAL NEUROLOGY Journal of neurosurgery Pub Date : 2025-03-07 DOI:10.3171/2024.10.JNS241060
Kyra M Halbert-Elliott, Michael E Xie, Bryan Dong, Oishika Das, Xihang Wang, Christopher M Jackson, Michael Lim, Judy Huang, Vivek S Yedavalli, Chetan Bettegowda, Risheng Xu
{"title":"Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia.","authors":"Kyra M Halbert-Elliott, Michael E Xie, Bryan Dong, Oishika Das, Xihang Wang, Christopher M Jackson, Michael Lim, Judy Huang, Vivek S Yedavalli, Chetan Bettegowda, Risheng Xu","doi":"10.3171/2024.10.JNS241060","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels.</p><p><strong>Methods: </strong>Six U-Net-based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors' institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations.</p><p><strong>Results: </strong>Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm2, which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29).</p><p><strong>Conclusions: </strong>U-Net-based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.</p>","PeriodicalId":16505,"journal":{"name":"Journal of neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.10.JNS241060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels.

Methods: Six U-Net-based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors' institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations.

Results: Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm2, which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29).

Conclusions: U-Net-based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of neurosurgery
Journal of neurosurgery 医学-临床神经学
CiteScore
7.20
自引率
7.30%
发文量
1003
审稿时长
1 months
期刊介绍: The Journal of Neurosurgery, Journal of Neurosurgery: Spine, Journal of Neurosurgery: Pediatrics, and Neurosurgical Focus are devoted to the publication of original works relating primarily to neurosurgery, including studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology. The Editors and Editorial Boards encourage submission of clinical and laboratory studies. Other manuscripts accepted for review include technical notes on instruments or equipment that are innovative or useful to clinicians and researchers in the field of neuroscience; papers describing unusual cases; manuscripts on historical persons or events related to neurosurgery; and in Neurosurgical Focus, occasional reviews. Letters to the Editor commenting on articles recently published in the Journal of Neurosurgery, Journal of Neurosurgery: Spine, and Journal of Neurosurgery: Pediatrics are welcome.
期刊最新文献
Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia. Effect of deep brain stimulation on nonmotor symptoms in essential tremor. Is there a clinical benefit of S100B for the management of mild traumatic brain injury? Letter to the Editor. A revision of the classic high-, moderate-, and low-contact sport categorization of risk for head and neck injuries. Letter to the Editor. Endoscopic transorbital approaches: the lateral orbital rim trade-off.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1