Kyra M Halbert-Elliott, Michael E Xie, Bryan Dong, Oishika Das, Xihang Wang, Christopher M Jackson, Michael Lim, Judy Huang, Vivek S Yedavalli, Chetan Bettegowda, Risheng Xu
{"title":"Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia.","authors":"Kyra M Halbert-Elliott, Michael E Xie, Bryan Dong, Oishika Das, Xihang Wang, Christopher M Jackson, Michael Lim, Judy Huang, Vivek S Yedavalli, Chetan Bettegowda, Risheng Xu","doi":"10.3171/2024.10.JNS241060","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels.</p><p><strong>Methods: </strong>Six U-Net-based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors' institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations.</p><p><strong>Results: </strong>Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm2, which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29).</p><p><strong>Conclusions: </strong>U-Net-based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.</p>","PeriodicalId":16505,"journal":{"name":"Journal of neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.10.JNS241060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels.
Methods: Six U-Net-based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors' institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations.
Results: Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm2, which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29).
Conclusions: U-Net-based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.
期刊介绍:
The Journal of Neurosurgery, Journal of Neurosurgery: Spine, Journal of Neurosurgery: Pediatrics, and Neurosurgical Focus are devoted to the publication of original works relating primarily to neurosurgery, including studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology. The Editors and Editorial Boards encourage submission of clinical and laboratory studies. Other manuscripts accepted for review include technical notes on instruments or equipment that are innovative or useful to clinicians and researchers in the field of neuroscience; papers describing unusual cases; manuscripts on historical persons or events related to neurosurgery; and in Neurosurgical Focus, occasional reviews. Letters to the Editor commenting on articles recently published in the Journal of Neurosurgery, Journal of Neurosurgery: Spine, and Journal of Neurosurgery: Pediatrics are welcome.