Adaptive Score Alignment Learning for Continual Perceptual Quality Assessment of 360-Degree Videos in Virtual Reality

Kanglei Zhou;Zikai Hao;Liyuan Wang;Xiaohui Liang
{"title":"Adaptive Score Alignment Learning for Continual Perceptual Quality Assessment of 360-Degree Videos in Virtual Reality","authors":"Kanglei Zhou;Zikai Hao;Liyuan Wang;Xiaohui Liang","doi":"10.1109/TVCG.2025.3549179","DOIUrl":null,"url":null,"abstract":"Virtual Reality Video Quality Assessment (VR-VQA) aims to evaluate the perceptual quality of 360-degree videos, which is crucial for ensuring a distortion-free user experience. Traditional VR-VQA methods trained on static datasets with limited distortion diversity struggle to balance correlation and precision. This becomes particularly critical when generalizing to diverse VR content and continually adapting to dynamic and evolving video distribution variations. To address these challenges, we propose a novel approach for assessing the perceptual quality of VR videos, Adaptive Score Alignment Learning (ASAL). ASAL integrates correlation loss with error loss to enhance alignment with human subjective ratings and precision in predicting perceptual quality. In particular, ASAL can naturally adapt to continually changing distributions through a feature space smoothing process that enhances generalization to unseen content. To further improve continual adaptation to dynamic VR environments, we extend ASAL with adaptive memory replay as a novel Continual Learning (CL) framework. Unlike traditional CL models, ASAL utilizes key frame extraction and feature adaptation to address the unique challenges of non-stationary variations with both the computation and storage restrictions of VR devices. We establish a comprehensive benchmark for VR-VQA and its CL counterpart, introducing new data splits and evaluation metrics. Our experiments demonstrate that ASAL outperforms recent strong baseline models, achieving overall correlation gains of up to 4.78% in the static joint training setting and 12.19% in the dynamic CL setting on various datasets. This validates the effectiveness of ASAL in addressing the inherent challenges of VR-VQA. Our code is available at https://github.com/ZhouKanglei/ASAL_CVQA.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 5","pages":"2880-2890"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual Reality Video Quality Assessment (VR-VQA) aims to evaluate the perceptual quality of 360-degree videos, which is crucial for ensuring a distortion-free user experience. Traditional VR-VQA methods trained on static datasets with limited distortion diversity struggle to balance correlation and precision. This becomes particularly critical when generalizing to diverse VR content and continually adapting to dynamic and evolving video distribution variations. To address these challenges, we propose a novel approach for assessing the perceptual quality of VR videos, Adaptive Score Alignment Learning (ASAL). ASAL integrates correlation loss with error loss to enhance alignment with human subjective ratings and precision in predicting perceptual quality. In particular, ASAL can naturally adapt to continually changing distributions through a feature space smoothing process that enhances generalization to unseen content. To further improve continual adaptation to dynamic VR environments, we extend ASAL with adaptive memory replay as a novel Continual Learning (CL) framework. Unlike traditional CL models, ASAL utilizes key frame extraction and feature adaptation to address the unique challenges of non-stationary variations with both the computation and storage restrictions of VR devices. We establish a comprehensive benchmark for VR-VQA and its CL counterpart, introducing new data splits and evaluation metrics. Our experiments demonstrate that ASAL outperforms recent strong baseline models, achieving overall correlation gains of up to 4.78% in the static joint training setting and 12.19% in the dynamic CL setting on various datasets. This validates the effectiveness of ASAL in addressing the inherent challenges of VR-VQA. Our code is available at https://github.com/ZhouKanglei/ASAL_CVQA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于虚拟现实 360 度视频持续感知质量评估的自适应分数对齐学习。
虚拟现实视频质量评估(VR-VQA)旨在评估360度视频的感知质量,这对于确保无失真的用户体验至关重要。传统的基于有限失真多样性的静态数据集训练的VR-VQA方法难以平衡相关性和精度。当推广到不同的VR内容并不断适应动态和不断发展的视频分发变化时,这一点变得尤为重要。为了解决这些挑战,我们提出了一种评估VR视频感知质量的新方法,即自适应分数对齐学习(ASAL)。ASAL集成了相关损失和误差损失,以增强与人类主观评分的一致性和预测感知质量的精度。特别是,ASAL可以通过特征空间平滑过程自然地适应不断变化的分布,从而增强对未见内容的泛化。为了进一步提高对动态VR环境的持续适应,我们将ASAL扩展为自适应记忆回放,作为一种新的持续学习(CL)框架。与传统的CL模型不同,ASAL利用关键帧提取和特征自适应来解决VR设备计算和存储限制下的非平稳变化的独特挑战。我们为VR-VQA及其CL对应物建立了一个全面的基准,引入了新的数据分割和评估指标。我们的实验表明,ASAL优于最近的强基线模型,在各种数据集的静态联合训练设置中实现了高达4.78%的总体相关增益,在动态CL设置中实现了12.19%的总体相关增益。这证实了ASAL在解决VR-VQA固有挑战方面的有效性。我们的代码可在https://github.com/ZhouKanglei/ASAL_CVQA上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynAvatar: Dynamic 3D Head Avatar Deformation With Expression Guided Gaussian Splatting. Understanding the Research-Practice Gap in Visualization Design Guidelines. QuRAFT: Enhancing Quantum Algorithm Design by Visual Linking Between Mathematical Concepts and Quantum Circuits. DanceAgent: Dance Movement Refinement With LLM Agent. Do You "Trust" This Visualization? An Inventory to Measure Trust in Visualizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1