Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2025-03-10 DOI:10.1016/j.est.2025.116069
José L. Torres-Madroñero , Julian D. Osorio , César Nieto-Londoño , Juan C. Ordonez
{"title":"Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants","authors":"José L. Torres-Madroñero ,&nbsp;Julian D. Osorio ,&nbsp;César Nieto-Londoño ,&nbsp;Juan C. Ordonez","doi":"10.1016/j.est.2025.116069","DOIUrl":null,"url":null,"abstract":"<div><div>Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"117 ","pages":"Article 116069"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25007820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Multi-objective operation of renewable multi-microgrids integrated with energy storage system considering power losses and harmonics Novel metal foam and phase change material integrated multi-tube heat exchanger design for simultaneous charging and discharging Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants Promoting long-term stability and high-temperature tolerance of lithium-ion batteries by introducing anion receptor additives into electrolyte Optimal energy storage system management in an uncertain smartgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1