Effect of dilution on fabricated functionally graded materials compositions: Modelling and mitigation strategies validated using the Ni-, Fe-, Cu- alloy system
Zhening Yang , Cory D. Jamieson , Zi-Kui Liu , Allison M. Beese
{"title":"Effect of dilution on fabricated functionally graded materials compositions: Modelling and mitigation strategies validated using the Ni-, Fe-, Cu- alloy system","authors":"Zhening Yang , Cory D. Jamieson , Zi-Kui Liu , Allison M. Beese","doi":"10.1016/j.addma.2025.104730","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) can be used to fabricate functionally graded materials (FGMs) in which composition, and therefore properties, vary spatially within a component. A practical consideration for FGM fabrication is the effects of dilution. In the gradient region of vertically graded FGMs, dilution from the previous layer with a different composition from that being newly deposited can result in the composition of the newly solidified layer deviating from the feedstock composition from the nozzles. In this study, a dilution model for multi-layer FGM samples is proposed and validated experimentally with an Inconel625 (IN625)-Monel400 FGM sample. Factors that affect the deviation from the designed compositional path are discussed and methods for mitigating dilution effects to produce designed path are provided and experimentally demonstrated in a stainless steel 316 L (SS316L)-50/50 wt% SS316L/Ni-Monel400 FGM sample, aiding in precise production of the designed FGM path.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"102 ","pages":"Article 104730"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000946","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) can be used to fabricate functionally graded materials (FGMs) in which composition, and therefore properties, vary spatially within a component. A practical consideration for FGM fabrication is the effects of dilution. In the gradient region of vertically graded FGMs, dilution from the previous layer with a different composition from that being newly deposited can result in the composition of the newly solidified layer deviating from the feedstock composition from the nozzles. In this study, a dilution model for multi-layer FGM samples is proposed and validated experimentally with an Inconel625 (IN625)-Monel400 FGM sample. Factors that affect the deviation from the designed compositional path are discussed and methods for mitigating dilution effects to produce designed path are provided and experimentally demonstrated in a stainless steel 316 L (SS316L)-50/50 wt% SS316L/Ni-Monel400 FGM sample, aiding in precise production of the designed FGM path.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.