Yanfang Yan , Peiyi Dang , Bingning Tian , Ying Chen , Xiaoning Li , Fengwang Ma , Jia-Long Yao , Pengmin Li
{"title":"Functional diversity of two apple paralogs MADS5 and MADS35 in regulating flowering and parthenocarpy","authors":"Yanfang Yan , Peiyi Dang , Bingning Tian , Ying Chen , Xiaoning Li , Fengwang Ma , Jia-Long Yao , Pengmin Li","doi":"10.1016/j.plaphy.2025.109763","DOIUrl":null,"url":null,"abstract":"<div><div>MADS-box genes play important roles in plant development, especially flowering and fruiting. In this study, we identified 54 type I and 69 type II MADS-box genes from the apple reference genome ‘GDDH13’. The type II MADS-box genes were further divided into 12 closely related subgroups, each exhibiting similar gene structures and conserved domains. Among these, two genes, <em>MADS35</em> and <em>MADS5,</em> belonging to APETALA1 (AP1) subfamily, were found to be predominantly expressed in apple fruit. To explore their functions, transgenic apple plants with altered expression of these genes were produced. Overexpression of <em>MADS35</em> induced early flowering, while overexpression of <em>MADS5</em> induced both early flowering and parthenocarpy. Transcriptome analysis suggested that the parthenocarpy observed in the transgenic apple plants might be associated with changes of gene expression within the auxin, GA, ABA, and ethylene signaling pathways. MADS5 and MADS35, although paralogs, differ by one amino acid in the MADS-domain and six amino acids in the K-domain, which could account for their function diversity in regulating apple fruiting. In summary, the present study provides a comprehensive analysis of MADS-box genes in apple and lays the foundation for future efforts to shorten the juvenile stage and enhance parthenocarpy-related traits in apple plants.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109763"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002918","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
MADS-box genes play important roles in plant development, especially flowering and fruiting. In this study, we identified 54 type I and 69 type II MADS-box genes from the apple reference genome ‘GDDH13’. The type II MADS-box genes were further divided into 12 closely related subgroups, each exhibiting similar gene structures and conserved domains. Among these, two genes, MADS35 and MADS5, belonging to APETALA1 (AP1) subfamily, were found to be predominantly expressed in apple fruit. To explore their functions, transgenic apple plants with altered expression of these genes were produced. Overexpression of MADS35 induced early flowering, while overexpression of MADS5 induced both early flowering and parthenocarpy. Transcriptome analysis suggested that the parthenocarpy observed in the transgenic apple plants might be associated with changes of gene expression within the auxin, GA, ABA, and ethylene signaling pathways. MADS5 and MADS35, although paralogs, differ by one amino acid in the MADS-domain and six amino acids in the K-domain, which could account for their function diversity in regulating apple fruiting. In summary, the present study provides a comprehensive analysis of MADS-box genes in apple and lays the foundation for future efforts to shorten the juvenile stage and enhance parthenocarpy-related traits in apple plants.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.